8 research outputs found

    A review of offshore decommissioning regulations in five countries – strengths and weaknesses

    No full text
    The decommissioning of offshore structures around the world will be a persisting problem in the coming decades as many structures will exceed their shelf life, or when reservoirs are no longer productive. This paper examines an overview of the global offshore decommissioning legal regime, and a summary of regulations in countries that are deemed to be more experienced in decommissioning such as the UK, Norway and USA. Two oil-producing countries in South East Asia, Malaysia and Thailand are also reviewed to identify potential gaps in decommissioning legislation for countries in its infancy in decommissioning. The differences were identified in terms of decommissioning preparation, decommissioning technical execution, additional environmental requirements and financial security framework. In conclusion, the majority of the regulations covering the technical section are similar within all countries studied. Major differences lie in two overarching philosophies of the framework - a prescriptive regime versus a goal-setting regime. Other decommissioning aspects appear to attract increasing attention, such as in expanding clarity on in situ decommissioning, residual liabilities, optimising finance related issues of decommissioning and offshore to onshore waste movement. These gaps in the existing framework can be filled by taking an evidence-based stand in developing the framework.EDB (Economic Devt. Board, S’pore)Accepted versio

    Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium

    No full text
    Methane Hydrates (MHs) are a promising energy source abundantly available in nature. Understanding the complex processes of MH formation and dissociation is critical for the development of safe and efficient technologies for energy recovery. Many laboratory and numerical studies have investigated these processes using synthesized MH-bearing sediments. A near-universal issue encountered in these studies is the spatial heterogeneous hydrate distribution in the testing apparatus. In the absence of direct observations (e.g. using X-ray computed tomography) coupled with real time production data, the common assumption made in almost all numerical studies is a homogeneous distribution of the various phases. In an earlier study (Yin et al., 2018) that involved the numerical description of a set of experiments on MH-formation in sandy medium using the excess water method, we showed that spatially heterogeneous phase distribution is inevitable and significant. In the present study, we use as a starting point the results and observations at the end of the MH formation and seek to numerically reproduce the laboratory experiments of depressurization-induced dissociation of the spatially-heterogeneous MH distribution. This numerical study faithfully reproduces the geometry of the laboratory apparatus, the initial and boundary conditions of the system, and the parameters of the dissociation stimulus, capturing accurately all stages of the experimental process. Using inverse modelling (history-matching) that minimized deviations between the experimental observations and numerical predictions, we determined the values of all the important flow, thermal, and kinetic parameters that control the system behaviour, which yielded simulation results that were in excellent agreement with the measurements of key monitored variables, i.e. pressure, temperature, cumulative production of gas and water over time. We determined that at the onset of depressurization (when the pressure drop – the driving force of dissociation – is at its maximum), the rate of MH dissociation approaches that of an equilibrium reaction and is limited by the heat transfer from the system surroundings. As the effect of depressurization declines over time, the dissociation reaction becomes kinetically limited despite significant heat inflows from the boundaries, which lead to localized temperature increases in the reactor

    Numerical Analysis of Experiments on Thermally Induced Dissociation of Methane Hydrates in Porous Media

    No full text
    Numerical simulation is essential for the prediction and evaluation of hydrocarbon reservoir performance. Numerical simulators developed for the description of the behavior of hydrates under production and the corresponding flow of fluids and heat accounting for all known processes are powerful, but they need validation through comparison to field or experimental data in order to instill confidence in their predictions. In this study, we analyze by means of numerical simulation the results of an experiment of methane hydrate dissociation by thermal stimulation in unconsolidated porous media heated through the vessel walls. The physics captured by the model include multicomponent heat and mass transfer, multiphase flow through porous media, and the phase behavior of the CH<sub>4</sub> + H<sub>2</sub>O system involved in methane hydrate formation and dissociation. The set of governing equations consists of the mass and energy conservation equations coupled with constitutive relationships, i.e., the dissolution of gas in H<sub>2</sub>O, relative permeability and capillary pressure models, composite thermal conductivity models, and methane hydrate phase equilibria. The model geometry describes accurately the hydrate reactor used in a recent experimental study investigating methane hydrate dissociation behavior [Chong et. al. Appl. Energy 2016, 177, 409–421]. The cumulative gas production is estimated and validated against three tests of experimental data involving different boundary temperatures, showing a good agreement between observations and numerical predictions. The predicted evolution of the spatial distributions of different phases over time shows that hydrate dissociation progresses inward from the reactor boundary to the center, methane gas accumulates to the top of the reactor because of buoyancy, and water migrates down to the bottom of the reactor because of gravity. A sharp hydrate dissociation front is predicted, and the estimated location of hydrate dissociation front suggests a linear relationship with the square root of time. A sensitivity analysis on the thermal conductivity of sand under fully saturated conditions is conducted to elucidate its effect on the gas production behavior. In addition, the energy efficiency ratio computed from the simulation of this boundary-wall heating technique varies from 14.0 to 16.2. Deviations between observations and predictions of the evolution of the temperature profile are attributed to initial heterogeneous distribution of the hydrate phase in the hydrate reactor

    Maritime Interdiction Operations in Logistically Barren Environments

    Get PDF
    Includes supplementary materialThis report contains analysis that shows that existing technology exists to improve Maritime Interdiction Operations (MIO) by approximately 30%. Furthermore, analysis contained herein will aid MIO planning for future operations. Since MIOs are an inherently dangerous, but necessary activity with far reaching implications to theater political and economic dynamics, this improvement is of great interest. MIO is a Naval solution to the problems of smuggling weapons, explosives, people and narcotics. MIO, when employed correctly has the potential to save lives and limit economic/political damage.N

    A review of gas hydrate growth kinetic models

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    1994 Annual Selected Bibliography: Asian American Studies and the Crisis of Practice

    No full text
    corecore