199 research outputs found
Debris Disks: Probing Planet Formation
Debris disks are the dust disks found around ~20% of nearby main sequence
stars in far-IR surveys. They can be considered as descendants of
protoplanetary disks or components of planetary systems, providing valuable
information on circumstellar disk evolution and the outcome of planet
formation. The debris disk population can be explained by the steady
collisional erosion of planetesimal belts; population models constrain where
(10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size)
typically form in protoplanetary disks. Gas is now seen long into the debris
disk phase. Some of this is secondary implying planetesimals have a Solar
System comet-like composition, but some systems may retain primordial gas.
Ongoing planet formation processes are invoked for some debris disks, such as
the continued growth of dwarf planets in an unstirred disk, or the growth of
terrestrial planets through giant impacts. Planets imprint structure on debris
disks in many ways; images of gaps, clumps, warps, eccentricities and other
disk asymmetries, are readily explained by planets at >>5au. Hot dust in the
region planets are commonly found (<5au) is seen for a growing number of stars.
This dust usually originates in an outer belt (e.g., from exocomets), although
an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018
A prospective study of symptoms, function, and medication use during acute illness in nursing home residents: design, rationale and cohort description
<p>Abstract</p> <p>Background</p> <p>Nursing home residents are at high risk for developing acute illnesses. Compared with community dwelling adults, nursing home residents are often more frail, prone to multiple medical problems and symptoms, and are at higher risk for adverse outcomes from acute illnesses. In addition, because of polypharmacy and the high burden of chronic disease, nursing home residents are particularly vulnerable to disruptions in transitions of care such as medication interruptions in the setting of acute illness. In order to better estimate the effect of acute illness on nursing home residents, we have initiated a prospective cohort which will allow us to observe patterns of acute illnesses and the consequence of acute illnesses, including symptoms and function, among nursing home residents. We also aim to examine the patterns of medication interruption, and identify patient, provider and environmental factors that influence continuity of medication prescribing at different points of care transition.</p> <p>Methods</p> <p>This is a prospective cohort of nursing home residents residing in two nursing homes in a metropolitan area. Baseline characteristics including age, gender, race, and comorbid conditions are recorded. Participants are followed longitudinally for a planned period of 3 years. We record acute illness incidence and characteristics, and measure symptoms including depression, pain, withdrawal symptoms, and function using standardized scales.</p> <p>Results</p> <p>76 nursing home residents have been followed for a median of 666 days to date. At baseline, mean age of residents was 74.4 (± 11.9); 32% were female; 59% were white. The most common chronic conditions were dementia (41%), depression (38%), congestive heart failure (25%) and chronic obstructive lung disease (27%). Mean pain score was 4.7 (± 3.6) on a scale of 0 to 10; Geriatric Depression Scale (GDS-15) score was 5.2 (± 4.4). During follow up, 138 acute illness episodes were identified, for an incidence of 1.5 (SD 2.0) episodes per resident per year; 74% were managed in the nursing home and 26% managed in the acute care setting.</p> <p>Conclusion</p> <p>In this report, we describe the conceptual model and methods of designing a longitudinal cohort to measure acute illness patterns and symptoms among nursing home residents, and describe the characteristics of our cohort at baseline. In our planned analysis, we will further estimate the effect of the use and interruption of medications on withdrawal and relapse symptoms and illness outcomes.</p
A High-Throughput Screen Identifies a New Natural Product with Broad-Spectrum Antibacterial Activity
Due to the inexorable invasion of our hospitals and communities by drug-resistant bacteria, there is a pressing need for novel antibacterial agents. Here we report the development of a sensitive and robust but low-tech and inexpensive high-throughput metabolic screen for novel antibiotics. This screen is based on a colorimetric assay of pH that identifies inhibitors of bacterial sugar fermentation. After validation of the method, we screened over 39,000 crude extracts derived from organisms that grow in the diverse ecosystems of Costa Rica and identified 49 with reproducible antibacterial effects. An extract from an endophytic fungus was further characterized, and this led to the discovery of three novel natural products. One of these, which we named mirandamycin, has broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis. This demonstrates the power of simple high throughput screens for rapid identification of new antibacterial agents from environmental samples
Cellular Levels and Binding of c-di-GMP Control Subcellular Localization and Activity of the Vibrio cholerae Transcriptional Regulator VpsT
The second messenger, cyclic diguanylate (c-di-GMP), regulates diverse cellular processes in bacteria. C-di-GMP is produced by diguanylate cyclases (DGCs), degraded by phosphodiesterases (PDEs), and receptors couple c-di-GMP production to cellular responses. In many bacteria, including Vibrio cholerae, multiple DGCs and PDEs contribute to c-di-GMP signaling, and it is currently unclear whether the compartmentalization of c-di-GMP signaling components is required to mediate c-di-GMP signal transduction. In this study we show that the transcriptional regulator, VpsT, requires c-di-GMP binding for subcellular localization and activity. Only the additive deletion of five DGCs markedly decreases the localization of VpsT, while single deletions of each DGC do not impact VpsT localization. Moreover, mutations in residues required for c-di-GMP binding, c-di-GMP-stabilized dimerization and DNA binding of VpsT abrogate wild type localization and activity. VpsT does not co-localize or interact with DGCs suggesting that c-di-GMP from these DGCs diffuses to VpsT, supporting a model in which c-di-GMP acts at a distance. Furthermore, VpsT localization in a heterologous host, Escherichia coli, requires a catalytically active DGC and is enhanced by the presence of VpsT-target sequences. Our data show that c-di-GMP signaling can be executed through an additive cellular c-di-GMP level from multiple DGCs affecting the localization and activity of a c-di-GMP receptor and furthers our understanding of the mechanisms of second messenger signaling
Temperature and time stability of whole blood lactate: implications for feasibility of pre-hospital measurement.
Background
To determine the time and temperature stability of whole blood lactate using experimental conditions applicable to the out-of-hospital environment.
Findings
We performed a prospective, clinical laboratory-based study at an academic hospital. Whole blood lactate was obtained by venipuncture from five post-prandial, resting subjects. Blood was stored in lithium heparinized vacutainers in three temperature conditions: 1) room temperature (20°C), 2) wrapped in a portable, instant ice pack (0°C), or 3) wet ice (0°C). Lactate concentrations (mmol/L) were measured at 0, 5, 10, 20, and 30 minutes after sampling, and compared using repeated measures analysis of variance.
Mean baseline lactate among resting subjects (N = 5) was 1.24 mmol/L (95%CI: 0.49,1.98 mmol/L). After 30 minutes, lactate concentration increased, on average, by 0.08 mmol/L (95%CI: 0.02,0.13 mmol/L), 0.18 mmol/L (95%CI: 0.07,0.28 mmol/L), and 0.36 mmol/L (95%CI: 0.24,0.47 mmol/L) when stored in wet ice, ice pack, and room temperature, respectively. The increase in lactate was similar in samples wrapped in portable ice pack or stored in wet ice at all time points (p > 0.05), and met criteria for equivalence at 30 minutes. However, lactate measurements from whole blood stored at room temperature were significantly greater, on average, than wet ice or portable ice pack within five and ten minutes, respectively (p < 0.05).
Conclusions
Whole blood lactate measurements using samples stored in a portable ice pack are similar to wet ice for up to 30 minutes. These conditions are applicable to the out-of-hospital environment, and should inform future studies of pre-hospital measurement of lactate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85785/1/Seymour - Temperature and time stability.pd
Vignette studies of medical choice and judgement to study caregivers' medical decision behaviour: systematic review
BACKGROUND: Vignette studies of medical choice and judgement have gained popularity in the medical literature. Originally developed in mathematical psychology they can be used to evaluate physicians' behaviour in the setting of diagnostic testing or treatment decisions. We provide an overview of the use, objectives and methodology of these studies in the medical field. METHODS: Systematic review. We searched in electronic databases; reference lists of included studies. We included studies that examined medical decisions of physicians, nurses or medical students using cue weightings from answers to structured vignettes. Two reviewers scrutinized abstracts and examined full text copies of potentially eligible studies. The aim of the included studies, the type of clinical decision, the number of participants, some technical aspects, and the type of statistical analysis were extracted in duplicate and discrepancies were resolved by consensus. RESULTS: 30 reports published between 1983 and 2005 fulfilled the inclusion criteria. 22 studies (73%) reported on treatment decisions and 27 (90%) explored the variation of decisions among experts. Nine studies (30%) described differences in decisions between groups of caregivers and ten studies (33%) described the decision behaviour of only one group. Only six studies (20%) compared decision behaviour against an empirical reference of a correct decision. The median number of considered attributes was 6.5 (IQR 4-9), the median number of vignettes was 27 (IQR 16-40). In 17 studies, decision makers had to rate the relative importance of a given vignette; in six studies they had to assign a probability to each vignette. Only ten studies (33%) applied a statistical procedure to account for correlated data. CONCLUSION: Various studies of medical choice and judgement have been performed to depict weightings of the value of clinical information from answers to structured vignettes of care givers. We found that the design and analysis methods used in current applications vary considerably and could be improved in a large number of cases
Dimerisation induced formation of the active site and the identification of three metal sites in EAL-phosphodiesterases
The bacterial second messenger cyclic di-3′,5′-guanosine monophosphate (c-di-GMP) is a key regulator of bacterial motility and virulence. As high levels of c-di-GMP are associated with the biofilm lifestyle, c-di-GMP hydrolysing phosphodiesterases (PDEs) have been identified as key targets to aid development of novel strategies to treat chronic infection by exploiting biofilm dispersal. We have studied the EAL signature motif-containing phosphodiesterase domains from the Pseudomonas aeruginosa proteins PA3825 (PA3825EAL) and PA1727 (MucREAL). Different dimerisation interfaces allow us to identify interface independent principles of enzyme regulation. Unlike previously characterised two-metal binding EAL-phosphodiesterases, PA3825EAL in complex with pGpG provides a model for a third metal site. The third metal is positioned to stabilise the negative charge of the 5′-phosphate, and thus three metals could be required for catalysis in analogy to other nucleases. This newly uncovered variation in metal coordination may provide a further level of bacterial PDE regulation
Gene expression profiling of primary cultures of ovarian epithelial cells identifies novel molecular classifiers of ovarian cancer
In order to elucidate the biological variance between normal ovarian surface epithelial (NOSE) and epithelial ovarian cancer (EOC) cells, and to build a molecular classifier to discover new markers distinguishing these cells, we analysed gene expression patterns of 65 primary cultures of these tissues by oligonucleotide microarray. Unsupervised clustering highlights three subgroups of tumours: low malignant potential tumours, invasive solid tumours and tumour cells derived from ascites. We selected 18 genes with expression profiles that enable the distinction of NOSE from these three groups of EOC with 92% accuracy. Validation using an independent published data set derived from tissues or primary cultures confirmed a high accuracy (87–96%). The distinctive expression pattern of a subset of genes was validated by quantitative reverse transcription–PCR. An ovarian-specific tissue array representing tissues from NOSE and EOC samples of various subtypes and grades was used to further assess the protein expression patterns of two differentially expressed genes (Msln and BMP-2) by immunohistochemistry. This study highlights the relevance of using primary cultures of epithelial ovarian cells as a model system for gene profiling studies and demonstrates that the statistical analysis of gene expression profiling is a useful approach for selecting novel molecular tumour markers
SOS Response Induces Persistence to Fluoroquinolones in Escherichia coli
Bacteria can survive antibiotic treatment without acquiring heritable antibiotic resistance. We investigated persistence to the fluoroquinolone ciprofloxacin in Escherichia coli. Our data show that a majority of persisters to ciprofloxacin were formed upon exposure to the antibiotic, in a manner dependent on the SOS gene network. These findings reveal an active and inducible mechanism of persister formation mediated by the SOS response, challenging the prevailing view that persisters are pre-existing and formed purely by stochastic means. SOS-induced persistence is a novel mechanism by which cells can counteract DNA damage and promote survival to fluoroquinolones. This unique survival mechanism may be an important factor influencing the outcome of antibiotic therapy in vivo
- …