17 research outputs found

    The Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Perfectly Conducting Surfaces: The Full Angular Intensity Distribution

    Full text link
    By a computer simulation approach we study the scattering of pp- or ss-polarized light from a two-dimensional, randomly rough, perfectly conducting surface. The pair of coupled inhomogeneous integral equations for two independent tangential components of the magnetic field on the surface are converted into matrix equations by the method of moments, which are then solved by the biconjugate gradient stabilized method. The solutions are used to calculate the mean differential reflection coefficient for given angles of incidence and specified polarizations of the incident and scattered fields. The full angular distribution of the intensity of the scattered light is obtained for strongly randomly rough surfaces by a rigorous computer simulation approach.Comment: 15 pages (RevTeX

    The Angular Intensity Correlation Functions C(1)C^{(1)} and C(10)C^{(10)} for the Scattering of S-Polarized Light from a One-Dimensional Randomly Rough Dielectric Surface

    Full text link
    We calculate the short-range contributions C(1)C^{(1)} and C(10)C^{(10)} to the angular intensity correlation function for the scattering of s-polarized light from a one-dimensional random interface between two dielectric media. The calculations are carried out on the basis of a new approach that separates out explicitly the contributions C(1)C^{(1)} a nd C(10)C^{(10)} to the angular intensity correlation function. The contribution C(1)C^{(1)} displays peaks associated with the memory effect and the reciprocal memory effect. In the case of a dielectric-dielectric interface, which does not support surface electromagnetic surface waves, these peaks arise from the co herent interference of multiply-scattered lateral waves supported by the in terface. The contribution C(10)C^{(10)} is a structureless function of its arguments.Comment: LaTeX, 14 pages including 5 figures. To appear SPIE publicatio

    The Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces

    Full text link
    An accurate and efficient numerical simulation approach to electromagnetic wave scattering from two-dimensional, randomly rough, penetrable surfaces is presented. The use of the M\"uller equations and an impedance boundary condition for a two-dimensional rough surface yields a pair of coupled two-dimensional integral equations for the sources on the surface in terms of which the scattered field is expressed through the Franz formulas. By this approach, we calculate the full angular intensity distribution of the scattered field that is due to a finite incident beam of pp-polarized light. We specifically check the energy conservation (unitarity) of our simulations (for the non-absorbing case). Only after a detailed numerical treatment of {\em both} diagonal and close-to-diagonal matrix elements is the unitarity condition found to be well-satisfied for the non-absorbing case (U>0.995{\mathcal U}>0.995), a result that testifies to the accuracy of our approach.Comment: Revtex, 4 pages, 2 figure

    Light scattering from an amplifying medium bounded by a randomly rough surface: A numerical study

    Full text link
    We study by numerical simulations the scattering of ss-polarized light from a rough dielectric film deposited on the planar surface of a semi-infinite perfect conductor. The dielectric film is allowed to be either active or passive, situations that we model by assigning negative and positive values, respectively, to the imaginary part ϵ2\epsilon_2 of the dielectric constant of the film. We study the reflectance R{\cal R} and the total scattered energy U{\cal U} for the system as functions of both ϵ2\epsilon_2 and the angle of incidence of the light. Furthermore, the positions and widths of the enhanced backscattering and satellite peaks are discussed. It is found that these peaks become narrower and higher when the amplification of the system is increased, and that their widths scale linearly with ϵ2\epsilon_2. The positions of the backscattering peaks are found to be independent of ϵ2\epsilon_2, while we find a weak dependence on this quantity in the positions of the satellite peaks.Comment: Revtex, 9 pages, 9 figure
    corecore