276 research outputs found
Discordant findings on dimercaptosuccinic acid scintigraphy in children with multi-detector row computed tomography-proven acute pyelonephritis
PurposeThe diagnosis of acute pyelonephritis (APN) is often difficult, as its clinical and biological manifestations are non-specific in children. If not treated quickly and adequately, however, APN may cause irreversible renal damage, possibly leading to hypertension and chronic renal failure. We were suspecting the diagnostic value of 99mTc-dimercaptosuccinic acid (DMSA) scan by experiences and so compared the results of DMSA scan to those of multi-detector row computed tomography (MDCT).MethodsWe retrospectively selected and analyzed 81 patients who were diagnosed as APN by MDCT during evaluation of their acute abdomen in emergency room and then received DMSA scan also for the diagnostic work-up of APN after admission. We evaluated the results of imaging studies and compared the diagnostic value of each method by age groups, <2 years (n=45) and ≥2 years (n=36).ResultsAmong total 81 patients with MDCT-proven APN. DMSA scan was diagnostic only in 55 children (68%), while the remaining 26 children (32%) showed false negative normal findings. These 26 patients were predominantly male with average age of 21 months and most of them, 19 (73.1%) were <2 years of age.ConclusionDMSA scan has obvious limitation compared to MDCT in depicting acute inflammatory lesions of kidney in children with APN, especially in early childhood less than 2 years of age. MDCT showed hidden lesions of APN, those were undetectable through DMSA scan in children
Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice.
Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development
- …