17 research outputs found
Mechanism of the Interaction between the Intrinsically Disordered C-Terminus of the Pro-Apoptotic ARTS Protein and the Bir3 Domain of XIAP
ARTS (Sept4_i2) is a mitochondrial pro-apoptotic protein that functions as a tumor suppressor. Its expression is significantly reduced in leukemia and lymphoma patients. ARTS binds and inhibits XIAP (X-linked Inhibitor of Apoptosis protein) by interacting with its Bir3 domain. ARTS promotes degradation of XIAP through the proteasome pathway. By doing so, ARTS removes XIAP inhibition of caspases and enables apoptosis to proceed. ARTS contains 27 unique residues in its C-terminal domain (CTD, residues 248–274) which are important for XIAP binding. Here we characterized the molecular details of this interaction. Biophysical and computational methods were used to show that the ARTS CTD is intrinsically disordered under physiological conditions. Direct binding of ARTS CTD to Bir3 was demonstrated using NMR and fluorescence spectroscopy. The Bir3 interacting region in ARTS CTD was mapped to ARTS residues 266–274, which are the nine C-terminal residues in the protein. Alanine scan of ARTS 266–274 showed the importance of several residues for Bir3 binding, with His268 and Cys273 contributing the most. Adding a reducing agent prevented binding to Bir3. A dimer of ARTS 266–274 formed by oxidation of the Cys residues into a disulfide bond bound with similar affinity and was probably required for the interaction with Bir3. The detailed analysis of the ARTS – Bir3 interaction provides the basis for setting it as a target for anti cancer drug design: It will enable the development of compounds that mimic ARTS CTD, remove IAPs inhibition of caspases, and thereby induce apoptosis
Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network
The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB–type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle
Riboswitch-dependent gene regulation and its evolution in the plant kingdom
Riboswitches are natural RNA sensors that affect gene control via their capacity to bind small molecules. Their prevalence in higher eukaryotes is unclear. We discovered a post-transcriptional mechanism in plants that uses a riboswitch to control a metabolic feedback loop through differential processing of the precursor RNA 3′ terminus. When cellular thiamin pyrophosphate (TPP) levels rise, metabolite sensing by the riboswitch located in TPP biosynthesis genes directs formation of an unstable splicing product, and consequently TPP levels drop. When transformed in plants, engineered TPP riboswitches can act autonomously to modulate gene expression. In an evolutionary perspective, a TPP riboswitch is also present in ancient plant taxa, suggesting that this mechanism is active since vascular plants emerged 400 million years ago
The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity.
International audienceIn plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) transcription factor specifying stem cell fate and the CLAVATA (CLV) ligand-receptor system limiting WUS expression. In this study, we identified the ERECTA (ER) pathway as a second receptor kinase signaling pathway that regulates WUS expression, and therefore shoot apical and floral meristem size, independently of the CLV pathway. We demonstrate that reduction in class III HD-ZIP and ER function together leads to a significant increase in WUS expression, resulting in extremely enlarged shoot meristems and a switch from spiral to whorled vegetative phyllotaxy. We further show that strong upregulation of WUS in the inflorescence meristem leads to ectopic expression of the AGAMOUS homeotic gene to a level that switches cell fate from floral meristem founder cell to carpel founder cell, suggesting an indirect role for ER in regulating floral meristem identity. This work illustrates the delicate balance between stem cell specification and differentiation in the meristem and shows that a shift in this balance leads to abnormal phyllotaxy and to altered reproductive cell fate
Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways.
International audienceThe shoot apical meristem (SAM) of angiosperm plants is a small, highly organized structure that gives rise to all above-ground organs. The SAM is divided into three functional domains: the central zone (CZ) at the SAM tip harbors the self-renewing pluripotent stem cells and the organizing center, providing daughter cells that are continuously displaced into the interior rib zone (RZ) or the surrounding peripheral zone (PZ), from which organ primordia are initiated. Despite the constant flow of cells from the CZ into the RZ or PZ, and cell recruitment for primordium formation, a stable balance is maintained between the distinct cell populations in the SAM. Here we combined an in-depth phenotypic analysis with a comparative RNA-Seq approach to characterize meristems from selected combinations of clavata3 (clv3), jabba-1D (jba-1D) and erecta (er) mutants of Arabidopsis thaliana We demonstrate that CLV3 restricts meristem expansion along the apical-basal axis, whereas class III HD-ZIP and ER pathways restrict meristem expansion laterally, but in distinct and possibly perpendicular orientations. Our k-means analysis reveals that clv3, jba-1D/+ and er lead to meristem enlargement by affecting different aspects of meristem function; for example, clv3 displays an increase in the stem cell population, whereas jba-1D/+ er exhibits an increase in mitotic activity and in the meristematic cell population. Our analyses demonstrate that a combined genetic and mRNA-Seq comparative approach provides a precise and sensitive method to identify cell type-specific transcriptomes in a small structure, such as the SAM
A supervised learning approach for taxonomic classification of core-photosystem-II genes and transcripts in the marine environment
Background
Cyanobacteria of the genera Synechococcus and Prochlorococcus play a key role in marine photosynthesis, which contributes to the global carbon cycle and to the world oxygen supply. Recently, genes encoding the photosystem II reaction center (psbA and psbD) were found in cyanophage genomes. This phenomenon suggested that the horizontal transfer of these genes may be involved in increasing phage fitness. To date, a very small percentage of marine bacteria and phages has been cultured. Thus, mapping genomic data extracted directly from the environment to its taxonomic origin is necessary for a better understanding of phage-host relationships and dynamics.
Results
To achieve an accurate and rapid taxonomic classification, we employed a computational approach combining a multi-class Support Vector Machine (SVM) with a codon usage position specific scoring matrix (cuPSSM). Our method has been applied successfully to classify core-photosystem-II gene fragments, including partial sequences coming directly from the ocean, to seven different taxonomic classes. Applying the method on a large set of DNA and RNA psbA clones from the Mediterranean Sea, we studied the distribution of cyanobacterial psbA genes and transcripts in their natural environment. Using our approach, we were able to simultaneously examine taxonomic and ecological distributions in the marine environment.
Conclusion
The ability to accurately classify the origin of individual genes and transcripts coming directly from the environment is of great importance in studying marine ecology. The classification method presented in this paper could be applied further to classify other genes amplified from the environment, for which training data is available
A supervised learning approach for taxonomic classification of core-photosystem-II genes and transcripts in the marine environment
Abstract Background Cyanobacteria of the genera Synechococcus and Prochlorococcus play a key role in marine photosynthesis, which contributes to the global carbon cycle and to the world oxygen supply. Recently, genes encoding the photosystem II reaction center (psbA and psbD) were found in cyanophage genomes. This phenomenon suggested that the horizontal transfer of these genes may be involved in increasing phage fitness. To date, a very small percentage of marine bacteria and phages has been cultured. Thus, mapping genomic data extracted directly from the environment to its taxonomic origin is necessary for a better understanding of phage-host relationships and dynamics. Results To achieve an accurate and rapid taxonomic classification, we employed a computational approach combining a multi-class Support Vector Machine (SVM) with a codon usage position specific scoring matrix (cuPSSM). Our method has been applied successfully to classify core-photosystem-II gene fragments, including partial sequences coming directly from the ocean, to seven different taxonomic classes. Applying the method on a large set of DNA and RNA psbA clones from the Mediterranean Sea, we studied the distribution of cyanobacterial psbA genes and transcripts in their natural environment. Using our approach, we were able to simultaneously examine taxonomic and ecological distributions in the marine environment. Conclusion The ability to accurately classify the origin of individual genes and transcripts coming directly from the environment is of great importance in studying marine ecology. The classification method presented in this paper could be applied further to classify other genes amplified from the environment, for which training data is available.</p
The Arabidopsis DESPERADO/AtWBC11 Transporter Is Required for Cutin and Wax Secretion1[C][W]
The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C16-18 fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses