460 research outputs found
Experimental demonstration of quantum source coding
We report an experimental demonstration of Schumacher's quantum noiseless
coding theorem. Our experiment employs a sequence of single photons each of
which represents three qubits. We initially prepare each photon in one of a set
of 8 non-orthogonal codeword states corresponding to the value of a block of
three binary letters. We use quantum coding to compress this quantum data into
a two-qubit quantum channel and then uncompress the two-qubit channel to
restore the original data with a fidelity approaching the theoretical limit.Comment: 5 pages, 4 figure
Quantum channel of continuous variable teleportation and nonclassicality of quantum states
Noisy teleportation of nonclassical quantum states via a two-mode
squeezed-vacuum state is studied with the completely positive map and the
Glauber-Sudarshan -function. Using the nonclassical depth as a measure of
transmission performance, we compare the teleportation scheme with the direct
transmission through a noisy channel. The noise model is based on the coupling
to the vacuum field. It is shown that the teleportation channel has better
transmission performance than the direct transmission channel in a certain
region. The bounds for such region and for obtaining the nonvanished
nonclassicality of the teleported quantum states are also discussed. Our model
shows a reasonable agreement with the observed teleportation fidelity in the
experiment by Furusawa et al. [Science {\bf 282}, 706 (1998)]. We finally
mention the required conditions for transmitting nonclassical features in real
experiments.Comment: 16 pages, 4 figure
Mode structure and photon number correlations in squeezed quantum pulses
The question of efficient multimode description of optical pulses is studied.
We show that a relatively very small number of nonmonochromatic modes can be
sufficient for a complete quantum description of pulses with Gaussian
quadrature statistics. For example, a three-mode description was enough to
reproduce the experimental data of photon number correlations in optical
solitons [S. Spalter et al., Phys. Rev. Lett. 81, 786 (1998)]. This approach is
very useful for a detailed understanding of squeezing properties of soliton
pulses with the main potential for quantum communication with continuous
variables. We show how homodyne detection and/or measurements of photon number
correlations can be used to determine the quantum state of the multi-mode
field. We also discuss a possible way of physical separation of the
nonmonochromatic modes.Comment: 14 pages, 4 figures; minor revisions of the text, new references; to
appear in the Phys. Rev.
Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy
: The lack of efficient targeting strategies poses significant limitations on the effectiveness of chemotherapeutic treatments. This issue also affects drug-loaded nanocarriers, reducing nanoparticles cancer cell uptake. We report on the fabrication and in vitro characterization of doxorubicin-loaded magnetic liposomes for localized treatment of liver malignancies. Colloidal stability, superparamagnetic behavior and efficient drug loading of our formulation were demonstrated. The application of an external magnetic field guaranteed enhanced nanocarriers cell uptake under cell medium flow in correspondence of a specific area, as we reported through in vitro investigation. A numerical model was used to validate experimental data of magnetic targeting, proving the possibility of accurately describing the targeting strategy and predict liposomes accumulation under different environmental conditions. Finally, in vitro studies on HepG2 cancer cells confirmed the cytotoxicity of drug-loaded magnetic liposomes, with cell viability reduction of about 50% and 80% after 24 h and 72 h of incubation, respectively. Conversely, plain nanocarriers showed no anti-proliferative effects, confirming the formulation safety. Overall, these results demonstrated significant targeting efficiency and anticancer activity of our nanocarriers and superparamagnetic nanoparticles entrapment could envision the theranostic potential of the formulation. The proposed magnetic targeting study could represent a valid tool for pre-clinical investigation regarding the effectiveness of magnetic drug targeting
Exercise Effects on Methylation of ASC Gene
Chronic moderate exercise has been reported to reduce pro-inflammatory cytokines. To analyze the molecular mechanisms by which training exerts these effects, the epigenetic influences of age and exercise on the ASC gene, which is responsible for IL-1 beta and IL-18 secretion, were investigated by ASC gene methylation. Further, the relationship between carcinogenesis and exercise, and methylation of the p15 tumor suppressive gene was also analyzed. High-intensity interval walking exercise, consisting of 3 min low-intensity walking at 40% of peak aerobic capacity followed by a 3 min high-intensity walking period above 70% of peak aerobic capacity, was continued for 6 months. Peripheral blood DNA extracts from young control (n = 34), older control (n = 153), and older exercise (n = 230) groups were then analyzed by pyrosequencing for DNA methylation. Methylation of ASC decreased significantly with age (young control vs. older control, p < 0.01), which is indicative of an age-dependent increase in ASC expression. Compared to the older control group, the degree of ASC methylation was higher in the older exercise group (older control vs. older exercise: p < 0.01), and presumably lower ASC expression. Neither exercise nor age affected the methylation of the p15. In summary, chronic moderate exercise appears to attenuate the age-dependent decrease in ASC methylation, implying suppression of excess pro-inflammatory cytokines through reduction of ASC expression.ArticleINTERNATIONAL JOURNAL OF SPORTS MEDICINE. 31(9):671-675 (2010)journal articl
Implementation of generalized quantum measurements: superadditive quantum coding, accessible information extraction, and classical capacity limit
Quantum information theory predicts that when the transmission resource is
doubled in quantum channels, the amount of information transmitted can be
increased more than twice by quantum channel coding technique, whereas the
increase is at most twice in classical information theory. This remarkable
feature, the superadditive quantum coding gain, can be implemented by
appropriate choices of code words and corresponding quantum decoding which
requires a collective quantum measurement. Recently, the first experimental
demonstration was reported [Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of
this paper is to describe our experiment in detail. Particularly, a design
strategy of quantum collective decoding in physical quantum circuits is
emphasized. We also address the practical implication of the gain on
communication performance by introducing the quantum-classical hybrid coding
scheme. We show how the superadditive quantum coding gain, even in a small code
length, can boost the communication performance of conventional coding
technique.Comment: 15 pages, 14 figure
Field test of quantum key distribution in the Tokyo QKD Network
A novel secure communication network with quantum key distribution in a
metropolitan area is reported. Different QKD schemes are integrated to
demonstrate secure TV conferencing over a distance of 45km, stable long-term
operation, and application to secure mobile phones.Comment: 21 pages, 19 figure
Entanglement quantification from incomplete measurements: Applications using photon-number-resolving weak homodyne detectors
The certificate of success for a number of important quantum information
processing protocols, such as entanglement distillation, is based on the
difference in the entanglement content of the quantum states before and after
the protocol. In such cases, effective bounds need to be placed on the
entanglement of non-local states consistent with statistics obtained from local
measurements. In this work, we study numerically the ability of a novel type of
homodyne detector which combines phase sensitivity and photon-number resolution
to set accurate bounds on the entanglement content of two-mode quadrature
squeezed states without the need for full state tomography. We show that it is
possible to set tight lower bounds on the entanglement of a family of two-mode
degaussified states using only a few measurements. This presents a significant
improvement over the resource requirements for the experimental demonstration
of continuous-variable entanglement distillation, which traditionally relies on
full quantum state tomography.Comment: 18 pages, 6 figure
- …