106 research outputs found
Development of a Compact Neutron Source based on Field Ionization Processes
The authors report on the use of carbon nanofiber nanoemitters to ionize
deuterium atoms for the generation of neutrons in a deuterium-deuterium
reaction in a preloaded target. Acceleration voltages in the range of 50-80 kV
are used. Field emission of electrons is investigated to characterize the
emitters. The experimental setup and sample preparation are described and first
data of neutron production are presented. Ongoing experiments to increase
neutron production yields by optimizing the field emitter geometry and surface
conditions are discussed.Comment: 4 pages, 5 figures; IVNC 201
Carbon Nanotubes: Printed Carbon Nanotube Electronics and Sensor Systems (Adv. Mater. 22/2016).
Printed electronics and sensors enable new applications ranging from low-cost disposable analytical devices to large-area sensor networks. Recent progress in printed carbon nanotube electronics in terms of materials, processing, devices, and applications is discussed on page 4397 by A. Javey and co-workers. The research challenges and opportunities regarding the processing and system-level integration are also discussed for enabling of practical applications
Highly Quantum-Confined InAs Nanoscale Membranes
Nanoscale size-effects drastically alter the fundamental properties of
semiconductors. Here, we investigate the dominant role of quantum confinement
in the field-effect device properties of free-standing InAs nanomembranes with
varied thicknesses of 5-50 nm. First, optical absorption studies are performed
by transferring InAs "quantum membranes" (QMs) onto transparent substrates,
from which the quantized sub-bands are directly visualized. These sub-bands
determine the contact resistance of the system with the experimental values
consistent with the expected number of quantum transport modes available for a
given thickness. Finally, the effective electron mobility of InAs QMs is shown
to exhibit anomalous field- and thickness-dependences that are in distinct
contrast to the conventional MOSFET models, arising from the strong quantum
confinement of carriers. The results provide an important advance towards
establishing the fundamental device physics of 2-D semiconductors
Recommended from our members
A compact neutron generator using a field ionization source
Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-#12;bers promise the high #12;eld-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of #12;field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties
Metal-catalyzed crystallization of amorphous carbon to graphene
Metal-catalyzed crystallization of amorphous carbon to graphene by thermal annealing is demonstrated. In this "limited source" process scheme, the thickness of the precipitated graphene is directly controlled by the thickness of the initial amorphous carbon layer. This is in contrast to chemical vapor deposition processes, where the carbon source is virtually unlimited and controlling the number of graphene layers depends on the tight control over a number of deposition parameters. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as chemical vapor deposition. The ability to synthesize graphene sheets with tunable thickness over large areas presents an important progress toward their eventual integration for various technological applications.open826
A compact neutron generator using a field ionization source
Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-#12;bers promise the high #12;eld-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of #12;field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties
- …