229 research outputs found
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
We envision a mobile edge computing (MEC) framework for machine learning (ML)
technologies, which leverages distributed client data and computation resources
for training high-performance ML models while preserving client privacy. Toward
this future goal, this work aims to extend Federated Learning (FL), a
decentralized learning framework that enables privacy-preserving training of
models, to work with heterogeneous clients in a practical cellular network. The
FL protocol iteratively asks random clients to download a trainable model from
a server, update it with own data, and upload the updated model to the server,
while asking the server to aggregate multiple client updates to further improve
the model. While clients in this protocol are free from disclosing own private
data, the overall training process can become inefficient when some clients are
with limited computational resources (i.e. requiring longer update time) or
under poor wireless channel conditions (longer upload time). Our new FL
protocol, which we refer to as FedCS, mitigates this problem and performs FL
efficiently while actively managing clients based on their resource conditions.
Specifically, FedCS solves a client selection problem with resource
constraints, which allows the server to aggregate as many client updates as
possible and to accelerate performance improvement in ML models. We conducted
an experimental evaluation using publicly-available large-scale image datasets
to train deep neural networks on MEC environment simulations. The experimental
results show that FedCS is able to complete its training process in a
significantly shorter time compared to the original FL protocol
-Split: A Privacy-Preserving Split Computing Framework for Cloud-Powered Generative AI
In the wake of the burgeoning expansion of generative artificial intelligence
(AI) services, the computational demands inherent to these technologies
frequently necessitate cloud-powered computational offloading, particularly for
resource-constrained mobile devices. These services commonly employ prompts to
steer the generative process, and both the prompts and the resultant content,
such as text and images, may harbor privacy-sensitive or confidential
information, thereby elevating security and privacy risks. To mitigate these
concerns, we introduce -Split, a split computing framework to
facilitate computational offloading while simultaneously fortifying data
privacy against risks such as eavesdropping and unauthorized access. In
-Split, a generative model, usually a deep neural network (DNN), is
partitioned into three sub-models and distributed across the user's local
device and a cloud server: the input-side and output-side sub-models are
allocated to the local, while the intermediate, computationally-intensive
sub-model resides on the cloud server. This architecture ensures that only the
hidden layer outputs are transmitted, thereby preventing the external
transmission of privacy-sensitive raw input and output data. Given the
black-box nature of DNNs, estimating the original input or output from
intercepted hidden layer outputs poses a significant challenge for malicious
eavesdroppers. Moreover, -Split is orthogonal to traditional
encryption-based security mechanisms, offering enhanced security when deployed
in conjunction. We empirically validate the efficacy of the -Split
framework using Llama 2 and Stable Diffusion XL, representative large language
and diffusion models developed by Meta and Stability AI, respectively. Our
-Split implementation is publicly accessible at
https://github.com/nishio-laboratory/lambda_split.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl
Deep Reinforcement Learning-Based Channel Allocation for Wireless LANs with Graph Convolutional Networks
Last year, IEEE 802.11 Extremely High Throughput Study Group (EHT Study
Group) was established to initiate discussions on new IEEE 802.11 features.
Coordinated control methods of the access points (APs) in the wireless local
area networks (WLANs) are discussed in EHT Study Group. The present study
proposes a deep reinforcement learning-based channel allocation scheme using
graph convolutional networks (GCNs). As a deep reinforcement learning method,
we use a well-known method double deep Q-network. In densely deployed WLANs,
the number of the available topologies of APs is extremely high, and thus we
extract the features of the topological structures based on GCNs. We apply GCNs
to a contention graph where APs within their carrier sensing ranges are
connected to extract the features of carrier sensing relationships.
Additionally, to improve the learning speed especially in an early stage of
learning, we employ a game theory-based method to collect the training data
independently of the neural network model. The simulation results indicate that
the proposed method can appropriately control the channels when compared to
extant methods
Communication-Oriented Model Fine-Tuning for Packet-Loss Resilient Distributed Inference Under Highly Lossy IoT Networks
The distributed inference (DI) framework has gained traction as a technique for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In DI, computational tasks are offloaded from the IoT device to the edge server via lossy IoT networks. However, generally, there is a communication system-level trade-off between communication latency and reliability; thus, to provide accurate DI results, a reliable and high-latency communication system is required to be adapted, which results in non-negligible end-to-end latency of the DI. This motivated us to improve the trade-off between the communication latency and accuracy by efforts on ML techniques. Specifically, we have proposed a communication-oriented model tuning (COMtune), which aims to achieve highly accurate DI with low-latency but unreliable communication links. In COMtune, the key idea is to fine-tune the ML model by emulating the effect of unreliable communication links through the application of the dropout technique. This enables the DI system to obtain robustness against unreliable communication links. Our ML experiments revealed that COMtune enables accurate predictions with low latency and under lossy networks
- …