5,580 research outputs found

    Highly Efficient Coupling of Nanolight Emitters to a Ultra-wide Tunable Nanofibre Cavity

    Get PDF
    Solid-state microcavities combining ultra-small mode volume, wide-range resonance frequency tuning, as well as lossless coupling to a single mode fibre are integral tools for nanophotonics and quantum networks. We developed an integrated system providing all of these three indispensable properties. It consists of a nanofibre Bragg cavity (NFBC) with the mode volume of under 1 micro cubic meter and repeatable tuning capability over more than 20 nm at visible wavelengths. In order to demonstrate quantum light-matter interaction, we establish coupling of quantum dots to our tunable NFBC and achieve an emission enhancement by a factor of 2.7.Comment: 19 pages, 8 figures, including Supporting Information (5 pages, 4 figures), accepted for SCIENTIFC REPORT

    Numerical analysis of the ultra-wide tunability of nanofiber Bragg cavities

    Get PDF
    Nanofiber Bragg cavities (NFBCs) are solid-state microcavities fabricated in optical tapered fiber. They can be tuned to a resonance wavelength of more than 20 nm by applying mechanical tension. This property is important for matching the resonance wavelength of an NFBC with the emission wavelength of single-photon emitters. However, the mechanism of the ultra-wide tunability and the limitation of the tuning range have not yet been clarified. It is important to comprehensively analyze both the deformation of the cavity structure in an NFBC and the change in the optical properties due to the deformation. Here, we present an analysis of the ultra-wide tunability of an NFBC and the limitation of the tuning range using three dimensional (3D) finite element method (FEM) and 3D finite-difference time-domain (FDTD) optical simulations. When we applied a tensile force of 200 µN to the NFBC, a stress of 5.18 GPa was concentrated at the groove in the grating. The grating period was extended from 300 to 313.2 nm, while the diameter slightly shrank from 300 to 297.1 nm in the direction of the grooves and from 300 to 298 nm in the direction orthogonal to the grooves. This deformation shifted the resonance peak by 21.5 nm. These simulations indicated that both the elongation of the grating period and the small shrinkage of the diameter contributed to the ultra-wide tunability of the NFBC. We also calculated the dependence of the stress at the groove, the resonance wavelength, and the quality Q factor while changing the total elongation of the NFBC. The dependence of the stress on the elongation was 1.68 × 10-2 GPa/µm. The dependence of the resonance wavelength was 0.07 nm/µm, which almost agrees with the experimental result. When the NFBC, assumed to have the total length of 32 mm, was stretched by 380 µm with the tensile force of 250 µN, the Q factor for the polarization mode parallel to the groove changed from 535 to 443, which corresponded to a change in Purcell factor from 5.3 to 4.9. This slight reduction seems acceptable for the application as single photon sources. Furthermore, assuming a rupture strain of the nanofiber of 10 GPa, it was estimated that the resonance peak could be shifted by up to about 42 nm

    Effect of electron-phonon coupling in the ARPES spectra of the tri-layer cuprate Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta}

    Full text link
    Angle-resolved photoemission spectroscopy using tunable low energy photons allows us to study the quasi-particle (QP) dispersions of the inner and outer CuO2 planes (IP and OP) separately in the tri-layer cuprate Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta} (Bi2223). The kink energy of the OP band is \sim 70 meV, as observed in various high-TcT_c cuprates, while that of the IP band is as large as 100 meV in the superconducting (SC) state. This large kink energy is attributed to the \sim 35 meV buckling mode plus the large (\sim 60 meV) SC gap of IP. The IP band also shows a weak kink feature at 70 meV in the SC state. The latter feature can be explained either by the 70 meV half-breathing mode or by the \sim 35 meV buckling-phonon mode plus the \sim 40 meV SC gap of OP if interlayer scattering of QP is involved.Comment: 5 pages, 2 figure

    Orientation Characteristics of Non-regiocontrolled Poly (3-hexyl-thiophene) Film by FTM on Various Liquid Substrates

    Get PDF
    Orientation characteristics of non-regiocontrolled poly (3-hexylthiophene) (NR-P3HT) films prepared by dynamic casting of floating film and transferring method (FTM) has been investigated. The film was first cast on liquid-substrate to obtain as a floating-film followed by its transfer on solid-substrate such as white-glass or Si-wafer in order to evaluate their optoelectronic characteristics. As a possible key-factor to generate the orientation of conjugated polymer in this method we focused on the components of liquid-substrate in this study. The orientation dependence upon various liquid-substrates reveals that dichroic ratio strongly changes with liquid-substrates. Pictures of floating-film show the change in size of floating-parts depending upon the liquid-substrate, representing the expansion length of casting solution upon the viscosity. These findings have indicated that spreading speed of polymer solution and solvent evaporation speed controls the size of floating-film leading to change in the orientation intensity. The multilayer coatings of oriented NR-P3HT films were used for polarized FTIR analysis exhibiting clear dichroism. The obtained dichroic characteristics were well corresponded with in-plane, out-of-plane and non-oriented vibronic modes of P3HT.India-Japan Expert Group Meeting on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation (IJEGMBE 2015), December 23-26, 2015, Fukuoka, Japa

    Investigation of frequency noise and spectrum linewidth in semiconductor optical amplifier

    Get PDF
    The characteristics of FM noise and linewidth of semiconductor optical amplifier without facet mirrors were theoretically analyzed and experimentally confirmed. The concept of discrete longitudinal mode for the spontaneous emission was introduced as the basis of quantum mechanical characteristics, allowing the quantitative examination of noise sources. The continuously broaden output spectrum profile of the amplified spontaneous emission (ASE) was well explained as a spectrum broadening of each longitudinal mode. We found that the linewidth of the inputted signal light hardly changes by the optical amplification in the SOA. The FM noise increases proportional to square value of the noise frequency and less affected by the electron density fluctuation, the linewidth enhancement factor and the ASE. The higher FM noise in the higher noise frequency is caused by the intrinsic phase fluctuation on the optical emission. The characteristics of the linewidth and the noise frequency dependency were experimentally confirmed

    Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM

    Get PDF
    We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.12th International Conference on Nanomolecular Electronics (ICNME-2016), December 14-16, 2016, Kobe International Conference Center, Kobe, Japa

    Fabrication of a nanofiber Bragg cavity with high quality factor using a focused helium ion beam

    Get PDF
    Nanofiber Bragg cavities (NFBCs) are solid-state microcavities fabricated in an optical tapered fiber. NFBCs are promising candidates as a platform for photonic quantum information devices due to their small mode volume, ultra-high coupling efficiencies, and ultra-wide tunability. However, the quality (Q) factor has been limited to be approximately 250, which may be due to limitations in the fabrication process. Here we report high Q NFBCs fabricated using a focused helium ion beam. Whenan NFBC with grooves of 640 periods is fabricated, the Q factor is over 4170, which is more than 16 times larger than that previously fabricated using a focused gallium ion beam

    Testing Hardy nonlocality proof with genuine energy-time entanglement

    Full text link
    We show two experimental realizations of Hardy ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by A. Cabello \emph{et al.} [Phys. Rev. Lett. \textbf{102}, 040401 (2009)]. Unlike, previous energy-time Bell experiments, these tests require precise tailored nonmaximally entangled states. One of them is equivalent to the two-setting two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.Comment: 5 pages, revtex4, 6 figure

    Non-interfering effects of active post-encoding tasks on episodic memory consolidation in humans

    Get PDF
    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theorie
    corecore