145 research outputs found

    Anti-NF-κB peptide derived from nuclear acidic protein attenuates ovariectomyinduced osteoporosis in mice

    Get PDF
    NF-κB is a transcription factor that is activated with aging. It plays a key role in the development of osteoporosis by promoting osteoclast differentiation and inhibiting osteoblast differentiation. In this study, we developed a small anti-NF-κB peptide called 6A-8R from a nuclear acidic protein (also known as macromolecular translocation inhibitor II, Zn2+-binding protein, or parathymosin) that inhibits transcriptional activity of NF-κB without altering its nuclear translocation and binding to DNA. Intraperitoneal injection of 6A-8R attenuated ovariectomy-induced osteoporosis in mice by inhibiting osteoclast differentiation, promoting osteoblast differentiation, and inhibiting sclerostin production by osteocytes in vivo with no apparent side effects. Conversely, in vitro, 6A-8R inhibited osteoclast differentiation by inhibiting NF-κB transcriptional activity, promoted osteoblast differentiation by promoting Smad1 phosphorylation, and inhibited sclerostin expression in osteocytes by inhibiting myocyte enhancer factors 2C and 2D. These findings suggest that 6A-8R has the potential to be an antiosteoporotic therapeutic agent with uncoupling properties.Takami K., Okamoto K., Etani Y., et al. Anti-NF-κB peptide derived from nuclear acidic protein attenuates ovariectomyinduced osteoporosis in mice. JCI Insight 8, e171962 (2023); https://doi.org/10.1172/jci.insight.171962

    Osteoclast differentiation independent of the TRANCE–RANK–TRAF6 axis

    Get PDF
    Osteoclasts are derived from myeloid lineage cells, and their differentiation is supported by various osteotropic factors, including the tumor necrosis factor (TNF) family member TNF-related activation-induced cytokine (TRANCE). Genetic deletion of TRANCE or its receptor, receptor activator of nuclear factor κB (RANK), results in severely osteopetrotic mice with no osteoclasts in their bones. TNF receptor-associated factor (TRAF) 6 is a key signaling adaptor for RANK, and its deficiency leads to similar osteopetrosis. Hence, the current paradigm holds that TRANCE–RANK interaction and subsequent signaling via TRAF6 are essential for the generation of functional osteoclasts. Surprisingly, we show that hematopoietic precursors from TRANCE-, RANK-, or TRAF6-null mice can become osteoclasts in vitro when they are stimulated with TNF-α in the presence of cofactors such as TGF-β. We provide direct evidence against the current paradigm that the TRANCE–RANK–TRAF6 pathway is essential for osteoclast differentiation and suggest the potential existence of alternative routes for osteoclast differentiation

    Effects of prior osteoporosis treatment on 12-month treatment response of romosozumab in patients with postmenopausal osteoporosis

    Get PDF
    Objectives: To investigate the effects of prior treatment and determine the predictors of a 12-month treatment response of romosozumab (ROMO) in 148 patients with postmenopausal osteoporosis. Methods: In this prospective, observational, and multicenter study, treatment naïve patients (Naïve; n = 50) or patients previously treated with bisphosphonates (BP; n = 37) or denosumab (DMAb; n = 45) or teriparatide (TPTD; n = 16) (mean age, 75.0 years; T-scores of the lumbar spine [LS] −3.2 and total hip [TH] −2.6) were switched to ROMO due to insufficient effects of prior treatment. Bone mineral density (BMD) and serum bone turnover markers were evaluated for 12 months. Results: At 12 months, changes in LS BMD were Naïve (18.2%), BP (10.2%), DMAb (6.4%), and TPTD (11.2%) (P < 0.001 between groups) and changes in TH BMD were Naïve (5.6%), BP (3.3%), DMAb (0.6%), and TPTD (4.4%) (P < 0.01 between groups), respectively. In all groups, the LS BMD significantly increased from baseline at 6 and 12 months, although only the DMAb group failed to obtain a significant increase in TH BMD during 12-month treatment. Mean values of N-terminal type I procollagen propeptide (PINP; μg/L) from baseline → 1 month → 12 months were Naïve (67.9 → 134.1 → 51.0), BP (32. 2 → 81.7 → 40.9), DMAb (30.4 → 56.2 → 75.3), and TPTD (97.4 → 105.1 → 37.1), and those of isoform 5b of tartrate-resistant acid phosphatase (TRACP-5b; mU/dL) were Naïve (500.4 → 283.8 → 267.1), BP (273.4 → 203.1 → 242.0), DMAb (220.3 → 246.1 → 304.8), and TPTD (446.6 → 305.1 → 235.7), respectively. Multiple regression analysis revealed that the significant predictors of BMD change at 12 months were difference of prior treatment (r = −2.8, P < 0.001) and value of PINP at 1 month (r = 0.04, P < 0.01) for LS, and difference of prior treatment (r = −1.3, P < 0.05) and percentage change of TRACP-5b at 1 month (r = −0.06, P < 0.05) for TH. Conclusions: The early effects of ROMO on LS and TH BMD increase at 12 months were significantly affected by the difference of prior treatment and are predicted by the early change in bone turnover markers.Ebina K., Tsuboi H., Nagayama Y., et al. Effects of prior osteoporosis treatment on 12-month treatment response of romosozumab in patients with postmenopausal osteoporosis. Joint Bone Spine 88, 105219 (2021); https://doi.org/10.1016/j.jbspin.2021.105219

    Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by denosumab in patients with postmenopausal osteoporosis

    Full text link
    Summary: In patients with postmenopausal osteoporosis, prior osteoporosis treatment affected the bone mineral density increase of following treatment with 12 months of romosozumab, although it did not affect that of following treatment with 12 months of denosumab after romosozumab. Purpose: To investigate the effects of prior osteoporosis treatment on the response to treatment with romosozumab (ROMO) followed by denosumab (DMAb) in patients with postmenopausal osteoporosis. Methods: In this prospective, observational, multicenter study, treatment-naïve patients (Naïve; n = 55) or patients previously treated with bisphosphonates (BP; n = 37), DMAb (DMAb; n = 45) or teriparatide (TPTD; n = 17) (mean age, 74.6 years; T-scores of the lumbar spine [LS] − 3.2 and total hip [TH] − 2.6) were switched to ROMO for 12 months, followed by DMAb for 12 months. Bone mineral density (BMD) and serum bone turnover markers were evaluated for 24 months. Results: A BMD increase was observed at 12 and 24 months in the following patients: Naïve (18.2% and 22.0%), BP (10.2% and 12.1%), DMAb (6.6% and 9.7%), and TPTD (10.8% and 15.0%) (P < 0.001 between the groups at both 12 and 24 months) in LS and Naïve (5.5% and 8.3%), BP (2.9% and 4.1%), DMAb (0.6% and 2.2%), and TPTD (4.3% and 5.4%) (P < 0.01 between the groups at 12 months and P < 0.001 at 24 months) in TH, respectively. The BMD increase in LS from 12 to 24 months was negatively associated with the levels of bone resorption marker at 24 months. Incidences of major fragility fractures for the respective groups were as follows: Naïve (5.5%), BP (16.2%), DMAb (11.1%), and TPTD (5.9%). Conclusions: Previous treatment affected the BMD increase of following treatment with ROMO, although it did not affect that of following treatment with DMAb after ROMO.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00198-022-06386-yEbina K., Etani Y., Tsuboi H., et al. Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by denosumab in patients with postmenopausal osteoporosis. Osteoporosis International 33, 1807 (2022

    Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6–CXCR2 pathway

    Full text link
    Objective: To investigate the efficacy of basic fibroblast growth factor (bFGF) in promoting meniscus regeneration by cultivating synovial mesenchymal stem cells (SMSCs) and to validate the underlying mechanisms. Methods: Human SMSCs were collected from patients with osteoarthritis. Eight-week-old nude rats underwent hemi-meniscectomy, and SMSCs in pellet form, either with or without bFGF (1.0 × 106 cells per pellet), were implanted at the site of meniscus defects. Rats were divided into the control (no transplantation), FGF (−) (pellet without bFGF), and FGF (+) (pellet with bFGF) groups. Different examinations, including assessment of the regenerated meniscus area, histological scoring of the regenerated meniscus and cartilage, meniscus indentation test, and immunohistochemistry analysis, were performed at 4 and 8 weeks after surgery. Results: Transplanted SMSCs adhered to the regenerative meniscus. Compared with the control group, the FGF (+) group had larger regenerated meniscus areas, superior histological scores of the meniscus and cartilage, and better meniscus mechanical properties. RNA sequencing of SMSCs revealed that the gene expression of chemokines that bind to CXCR2 was upregulated by bFGF. Furthermore, conditioned medium derived from SMSCs cultivated with bFGF exhibited enhanced cell migration, proliferation, and chondrogenic differentiation, which were specifically inhibited by CXCR2 or CXCL6 inhibitors. Conclusion: SMSCs cultured with bFGF promoted the expression of CXCL6. This mechanism may enhance cell migration, proliferation, and chondrogenic differentiation, thereby resulting in superior meniscus regeneration and cartilage preservation.Goshima A., Etani Y., Hirao M., et al. Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6–CXCR2 pathway. Osteoarthritis and Cartilage , (2023); https://doi.org/10.1016/j.joca.2023.07.010

    Co-transplantation of Human Embryonic Stem Cell-derived Neural Progenitors and Schwann Cells in a Rat Spinal Cord Contusion Injury Model Elicits a Distinct Neurogenesis and Functional Recovery

    Get PDF
    Co-transplantation of neural progenitors (NPs) with Schwann cells (SCs) might be a way to overcome low rate of neuronal differentiation of NPs following transplantation in spinal cord injury (SCI) and the improvement of locomotor recovery. In this study, we initially generated NPs from human embryonic stem cells (hESCs) and investigated their potential for neuronal differentiation and functional recovery when co-cultured with SCs in vitro and co-transplanted in a rat acute model of contused SCI. Co-cultivation results revealed that the presence of SCs provided a consistent status for hESC-NPs and recharged their neural differentiation toward a predominantly neuronal fate. Following transplantation, a significant functional recovery was observed in all engrafted groups (NPs, SCs, NPs+SCs) relative to the vehicle and control groups. We also observed that animals receiving co-transplants established a better state as assessed with the BBB functional test. Immunohistofluorescence evaluation five weeks after transplantation showed invigorated neuronal differentiation and limited proliferation in the co-transplanted group when compared to the individual hESC-NPs grafted group. These findings have demonstrated that the co-transplantation of SCs with hESC-NPs could offer a synergistic effect, promoting neuronal differentiation and functional recovery

    Linker histone H1 is present in centromeric chromatin of living human cells next to inner kinetochore proteins

    Get PDF
    The vertebrate kinetochore complex assembles at the centromere on α-satellite DNA. In humans, α-satellite DNA has a repeat length of 171 bp slightly longer than the DNA in the chromatosome containing the linker histone H1. The centromere-binding protein CENP-B binds specifically to α-satellite DNA with properties of a centromeric-linker histone. Here, we analysed if linker histone H1 is present at or excluded from centromeric chromatin by CENP-B. By immunostaining we detected the presence, but no enrichment or depletion of five different H1 subtypes at centromeric chromatin. The binding dynamics of H1 at centromeric sites were similar to that at other locations in the genome. These dynamics did not change in CENP-B depleted cells, suggesting that CENP-B and H1 co-exist in centromeric chromatin with no or little functional overlap. By bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer (FRET), we revealed that the linker histone H1 subtypes H1° and H1.2 bind to centromeric chromatin in interphase nuclei in direct neighbourhood to inner kinetochore proteins
    corecore