19 research outputs found

    Dynamical clustering of counterions on flexible polyelectrolytes

    Full text link
    Molecular dynamics simulations are used to study the local dynamics of counterion-charged polymer association at charge densities above and below the counterion condensation threshold. Surprisingly, the counterions form weakly-interacting clusters which exhibit short range orientational order, and which decay slowly due to migration of ions across the diffuse double layer. The cluster dynamics are insensitive to an applied electric field, and qualitatively agree with the available experimental data. The results are consistent with predictions of the classical theory only over much longer time scales

    Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability

    Full text link
    During the directional solidification of peritectic alloys, two stable solid phases (parent and peritectic) grow competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio (G/vpG/v_p), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In contrast, when G/vpG/v_p is large enough for both phases to be morphologically stable, the formation of the microstructurebecomes controlled by a subtle interplay between the nucleation and growth of the two solid phases. The structures that have been observed in this regime (in small samples where convection effect are suppressed) include alternate layers (bands) of the parent and peritectic phases perpendicular to the growth direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1 (1995)], as well as partially filled bands (islands), where the peritectic phase does not fully cover the parent phase which grows continuously. We develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to explore the formation of these structures. Simulations of this model shed light on the morphology transition from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth morphology that one might expect to observe in large samples under purely diffusive growth conditions.Comment: Final version, minor revisions, 16 pages, 14 EPS figures, RevTe

    Reactivation of Epstein–Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn2+-chelating function

    Get PDF
    EBNA1 is the only Epstein–Barr virus (EBV) latent protein responsible for viral genome maintenance and is expressed in all EBV-infected cells. Zn2+ is essential for oligomerization of the functional EBNA1. We constructed an EBNA1 binding peptide with a Zn2+ chelator to create an EBNA1-specific inhibitor (ZRL5P4). ZRL5P4 by itself is sufficient to reactivate EBV from its latent infection. ZRL5P4 is able to emit unique responsive fluorescent signals once it binds with EBNA1 and a Zn2+ ion. ZRL5P4 can selectively disrupt the EBNA1 oligomerization and cause nasopharyngeal carcinoma (NPC) tumor shrinkage, possibly due to EBV lytic induction. Dicer1 seems essential for this lytic reactivation. As can been seen, EBNA1 is likely to maintain NPC cell survival by suppressing viral reactivation

    The Spill-Over Impact of the Novel Coronavirus-19 Pandemic on Medical Care and Disease Outcomes in Non-communicable Diseases: A Narrative Review

    Get PDF
    OBJECTIVES: The coronavirus-19 (COVID-19) pandemic has claimed more than 5 million lives worldwide by November 2021. Implementation of lockdown measures, reallocation of medical resources, compounded by the reluctance to seek help, makes it exceptionally challenging for people with non-communicable diseases (NCD) to manage their diseases. This review evaluates the spill-over impact of the COVID-19 pandemic on people with NCDs including cardiovascular diseases, cancer, diabetes mellitus, chronic respiratory disease, chronic kidney disease, dementia, mental health disorders, and musculoskeletal disorders. METHODS: Literature published in English was identified from PubMed and medRxiv from January 1, 2019 to November 30, 2020. A total of 119 articles were selected from 6,546 publications found. RESULTS: The reduction of in-person care, screening procedures, delays in diagnosis, treatment, and social distancing policies have unanimously led to undesirable impacts on both physical and psychological health of NCD patients. This is projected to contribute to more excess deaths in the future. CONCLUSION: The spill-over impact of COVID-19 on patients with NCD is just beginning to unravel, extra efforts must be taken for planning the resumption of NCD healthcare services post-pandemic

    Two-body operators and correlation crystal field models

    No full text
    published_or_final_versionPhysicsMasterMaster of Philosoph

    Erratum: Reactivation of Epstein–Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn2+-chelating function (Proceedings of the National Academy of Sciences of the United States of America (2019) 116 (26614-26624) DOI: 10.1073/pnas.1915372116)

    No full text
    Correction for “Reactivation of Epstein–Barr virus by a dualresponsive fluorescent EBNA1-targeting agent with Zn2+- chelating function,” by Lijun Jiang, Hong Lok Lung, Tao Huang, Rongfeng Lan, Shuai Zha, Lai Sheung Chan, Waygen Thor, Tik-Hung Tsoi, Ho-Fai Chau, Cecilia Boreström, Steven L. Cobb, Sai Wah Tsao, Zhao-Xiang Bian, Ga-Lai Law, Wing-Tak Wong, William Chi-Shing Tai, Wai Yin Chau, Yujun Du, Lucas Hao Xi Tang, Alan Kwok Shing Chiang, Jaap M. Middeldorp, Kwok-Wai Lo, Nai Ki Mak, Nicholas J. Long, and Ka-Leung Wong, which was first published December 10, 2019; 10.1073/pnas.1915372116 (Proc. Natl. Acad. Sci. U.S.A. 116, 26614–26624). The authors note that Fig. 6 appeared incorrectly. Part of panel D of the published figure was inadvertently omitted. The corrected figure and its legend appear below. (Figure Presented)
    corecore