30 research outputs found
Star and Planet Formation with ALMA: an Overview
Submillimeter observations with ALMA will be the essential next step in our
understanding of how stars and planets form. Key projects range from detailed
imaging of the collapse of pre-stellar cores and measuring the accretion rate
of matter onto deeply embedded protostars, to unravelling the chemistry and
dynamics of high-mass star-forming clusters and high-spatial resolution studies
of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of
"Science with ALMA: a New Era for Astrophysics". Astrophysics & Space
Science, in pres
Genome-wide functional perturbation of human microsatellite repeats using engineered zinc finger transcription factors.
Repeat elements can be dysregulated at a genome-wide scale in human diseases. For example, in Ewing sarcoma, hundreds of inert GGAA repeats can be converted into active enhancers when bound by EWS-FLI1. Here we show that fusions between EWS and GGAA-repeat-targeted engineered zinc finger arrays (ZFAs) can function at least as efficiently as EWS-FLI1 for converting hundreds of GGAA repeats into active enhancers in a Ewing sarcoma precursor cell model. Furthermore, a fusion of a KRAB domain to a ZFA can silence GGAA microsatellite enhancers genome wide in Ewing sarcoma cells, thereby reducing expression of EWS-FLI1-activated genes. Remarkably, this KRAB-ZFA fusion showed selective toxicity against Ewing sarcoma cells compared with non-Ewing cancer cells, consistent with its Ewing sarcoma-specific impact on the transcriptome. These findings demonstrate the value of ZFAs for functional annotation of repeats and illustrate how aberrant microsatellite activities might be regulated for potential therapeutic applications
Studies of Dense Cores with ALMA
Dense cores are the simplest star-forming sites that we know, but despite
their simplicity, they still hold a number of mysteries that limit our
understanding of how solar-type stars form. ALMA promises to revolutionize our
knowledge of every stage in the life of a core, from the pre-stellar phase to
the final disruption by the newly born star. This contribution presents a brief
review of the evolution of dense cores and illustrates particular questions
that will greatly benefit from the increase in resolution and sensitivity
expected from ALMAComment: 6 pages, 2 figures, to appear in Astrophysics and Space Science,
special issue of "Science with ALMA: a new era for Astrophysics" conference,
ed. Dr. Bachille
Herschel-PACS spectroscopy of the intermediate mass protostar NGC 7129 FIRS 2
Aims. We present preliminary results of the first Herschel spectroscopic observations of NGC 7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope.
Methods. The PACS instrument was used in line spectroscopy mode (R = 1000–5000) with 15 spectral bands between 63 and 185 μm. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II.
Results. Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines.
Conclusions. It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks
Origin of the hot gas in low-mass protostars, Herschel-PACS spectroscopy of HH 46
Aims. “Water In Star-forming regions with Herschel” (WISH) is a Herschel key programme aimed at understanding the physical and chemical
structure of young stellar objects (YSOs) with a focus on water and related species.
Methods. The low-mass protostar HH 46 was observed with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space
Observatory to measure emission in H2O, CO, OH, [O i], and [C ii] lines located between 63 and 186 μm. The excitation and spatial distribution
of emission can disentangle the different heating mechanisms of YSOs, with better spatial resolution and sensitivity than previously possible.
Results. Far-IR line emission is detected at the position of the protostar and along the outflow axis. The OH emission is concentrated at the
central position, CO emission is bright at the central position and along the outflow, and H2O emission is concentrated in the outflow. In addition,
[O i] emission is seen in low-velocity gas, assumed to be related to the envelope, and is also seen shifted up to 170 km s−1 in both the red- and
blue-shifted jets. Envelope models are constructed based on previous observational constraints. They indicate that passive heating of a spherical
envelope by the protostellar luminosity cannot explain the high-excitation molecular gas detected with PACS, including CO lines with upper levels
at >2500 K above the ground state. Instead, warm CO and H2O emission is probably produced in the walls of an outflow-carved cavity in the
envelope, which are heated by UV photons and non-dissociative C-type shocks. The bright OH and [Oi] emission is attributed to J-type shocks in
dense gas close to the protostar. In the scenario described here, the combined cooling by far-IR lines within the central spatial pixel is estimated to
be 2 × 10−2 L, with 60–80% attributed to J- and C-type shocks produced by interactions between the jet and the envelope