73 research outputs found

    Intersections of ultracold atomic polarons and nuclear clusters: How is a chart of nuclides modified in dilute neutron matter?

    Full text link
    Neutron star observations, as well as experiments on neutron-rich nuclei, used to motivate one to look at degenerate nuclear matter from its extreme, namely, pure neutron matter. As an important next step, impurities and clusters in dilute neutron matter have attracted special attention. In this paper, we review in-medium properties of these objects on the basis of the physics of polarons, which have been recently realized in ultracold atomic experiments. We discuss how such atomic and nuclear systems are related to each other in terms of polarons. In addition to the interdisciplinary understanding of in-medium nuclear clusters, it is shown that the quasiparticle energy of a single proton in neutron matter is associated with the symmetry energy, implying a novel route toward the nuclear equation of state from the neutron-rich side.Comment: 28 pages, 2 figure

    miRNA-720 Controls Stem Cell Phenotype, Proliferation and Differentiation of Human Dental Pulp Cells

    Get PDF
    Dental pulp cells (DPCs) are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs) have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP) cells from human DPCs and periodontal ligament cells (PDLCs), and performed a locked nucleic acid (LNA)-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP) cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs), which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs

    Small-angle X-ray diffraction studies of a molluscan smooth muscle in the catch state

    Get PDF
    Small-angle X-ray diffraction patterns from the anterior byssus retractor muscle of Mytilus edulis in the resting, active, and catch states were examined closely to elucidate the structural features of catch. The specimens were isometrically contracted by stimulation with acetylcholine. The specimens that produced strong tensions in both the active and catch states showed noticeable structural change in the thick filaments. Although the tension was weaker in the catch state than in the active state, the axial spacings of the 14.5 nm meridional reflection and its higher order reflections from the thick filaments were more elongated in the catch state than in the active state. This means that the thick filaments were stretched more strongly in the catch state than in the active state

    Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites

    Get PDF
    The p300 and CBP histone acetyltransferases are recruited to DNA double-strand break (DSB) sites where they induce histone acetylation, thereby influencing the chromatin structure and DNA repair process. Whether p300/CBP at DSB sites also acetylate non-histone proteins, and how their acetylation affects DSB repair, remain unknown. Here we show that p300/CBP acetylate RAD52, a human homologous recombination (HR) DNA repair protein, at DSB sites. Using in vitro acetylated RAD52, we identified 13 potential acetylation sites in RAD52 by a mass spectrometry analysis. An immunofluorescence microscopy analysis revealed that RAD52 acetylation at DSBs sites is counteracted by SIRT2- and SIRT3-mediated deacetylation, and that non-acetylated RAD52 initially accumulates at DSB sites, but dissociates prematurely from them. In the absence of RAD52 acetylation, RAD51, which plays a central role in HR, also dissociates prematurely from DSB sites, and hence HR is impaired. Furthermore, inhibition of ataxia telangiectasia mutated (ATM) protein by siRNA or inhibitor treatment demonstrated that the acetylation of RAD52 at DSB sites is dependent on the ATM protein kinase activity, through the formation of RAD52, p300/CBP, SIRT2, and SIRT3 foci at DSB sites. Our findings clarify the importance of RAD52 acetylation in HR and its underlying mechanism

    Structure of two-and three-alpha systems in cold neutron matter

    No full text
    We present stability and structure of two-and three-alpha systems embedded in dilute cold neutron matter. By solving a few-alpha Schrödinger equation with quasiparticle properties, i.e.,effective mass and induced two-and three-alpha interactions, which are evaluated in terms of Fermi polarons,itis shown that 8Be and the Hoyle state become bound at densities of about10−4 and 10−3 of the saturation density, respectively. It is also seen that, under cold neutron matter environment, both systems become smaller than the corresponding systems in vacuum. Our results would affect astrophysical models for stellar collapse and neutron star mergers, as well as relevant reaction rates for nucleosynthesis

    Resonance-to-bound transition of 5^5He in neutron matter and its analogy with heteronuclear Feshbach molecule

    Full text link
    We theoretically investigate the fate of a neutron-alpha pp-wave resonance in dilute neutron matter, which may be encountered in neutron stars and supernova explosions. While 5^5He is known as a resonant state that decays to a neutron and an alpha particle in vacuum, this unstable state turns into a stable bound state in the neutron Fermi sea because the decay process is forbidden by the Pauli-blocking effect of neutrons. Such a resonance-to-bound transition assisted by the Pauli-blocking effect can be realized in cold atomic experiments for a quantum mixture near the heteronuclear Feshbach resonance.Comment: 7 pages, 4 figure
    corecore