19 research outputs found

    Decreased soluble guanylate cyclase contributes to cardiac dysfunction induced by chronic doxorubicin treatment in mice

    Get PDF
    Aims: The use of doxorubicin, a potent chemotherapeutic agent, is limited by cardiotoxicity. We tested the hypothesis that decreased soluble guanylate cyclase (sGC) enzyme activity contributes to the development of doxorubicin-induced cardiotoxicity. Results: Doxorubicin administration (20 mg/kg, intraperitoneally [IP]) reduced cardiac sGC activity in wild-type (WT) mice. To investigate whether decreased sGC activity contributes to doxorubicin-induced cardiotoxicity, we studied mice with cardiomyocyte-specific deficiency of the sGC alpha 1-subunit (mice with cardiomyocyte-specific deletion of exon 6 of the sGC alpha 1 allele [sGC alpha 1(-/-CM)]). After 12 weeks of doxorubicin administration (2 mg/kg/week IP), left ventricular (LV) systolic dysfunction was greater in sGC alpha 1(-/-CM) than WT mice. To further assess whether reduced sGC activity plays a pathogenic role in doxorubicin-induced cardiotoxicity, we studied a mouse model in which decreased cardiac sGC activity was induced by cardiomyocyte-specific expression of a dominant negative sGC alpha 1 mutant (DNsGC alpha 1) upon doxycycline removal (Tet-off). After 8 weeks of doxorubicin administration, DNsGC alpha 1(tg/+), but not WT, mice displayed LV systolic dysfunction and dilatation. The difference in cardiac function and remodeling between DNsGC alpha 1(tg/+) and WT mice was even more pronounced after 12 weeks of treatment. Further impairment of cardiac function was attenuated when DNsGC alpha 1 gene expression was inhibited (beginning at 8 weeks of doxorubicin treatment) by administering doxycycline. Furthermore, doxorubicin-associated reactive oxygen species generation was higher in sGC alpha 1-deficient than WT hearts. Innovation and Conclusion: These data demonstrate that a reduction in cardiac sGC activity worsens doxorubicin-induced cardiotoxicity in mice and identify sGC as a potential therapeutic target. Various pharmacological sGC agonists are in clinical development or use and may represent a promising approach to limit doxorubicin-associated cardiotoxicity

    New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary

    Get PDF
    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous

    Dissociation between urate and blood pressure in mice and in people with early Parkinson's diseaseResearch in context

    No full text
    Background: Epidemiological, laboratory and clinical studies have established an association between elevated urate and high blood pressure (BP). However, the inference of causality remains controversial. A naturally occurring antioxidant, urate may also be neuroprotective, and urate-elevating treatment with its precursor inosine is currently under clinical development as a potential disease-modifying strategy for Parkinson's disease (PD). Methods: Our study takes advantage of a recently completed phase II trial evaluating oral inosine in de novo non-disabling early PD with no major cardiovascular and nephrological conditions, and of three lines of genetically engineered mice: urate oxidase (UOx) global knockout (gKO), conditional KO (cKO), and transgenic (Tg) mice with markedly elevated, mildly elevated, and substantially reduced serum urate, respectively, to systematically investigate effects of urate-modifying manipulation on BP. Findings: Among clinical trial participants, change in serum urate but not changes in systolic, diastolic and orthostatic BP differed by treatment group. There was no positive correlation between urate elevations and changes in systolic, diastolic and orthostatic BP ((p = .05 (in inverse direction), 0.30 and 0.63, respectively)). Between UOx gKO, cKO, or Tg mice and their respective wildtype littermates there were no significant differences in systolic or diastolic BP or in their responses to BP-regulating interventions. Interpretation: Our complementary preclinical and human studies of urate modulation in animal models and in generally healthy early PD do not support a hypertensive effect of urate elevation or an association between urate and BP. Fund: U.S. Department of Defense, RJG Foundation, Michael J. Fox Foundation LEAPS program, National Institutes of Health, American Federation for Aging Research, Parkinson's Disease Foundation Advancing Parkinson's Therapies initiative. Keywords: Urate, Hyperuricemia, Urate oxidase, Blood pressure, Hypertensio
    corecore