7 research outputs found

    Modelo de distribución de agua en suelo regado por goteo

    Get PDF
    [ES] Se desarrolla un modelo de simulación de la dinámica del agua en el suelo en riego localizado, denominado SIMDAS. Para el desarrollo del procedimiento numérico, se utiliza la teoría de flujo de agua en condiciones de no saturación, sin efecto histerético, resolviendo la ecuación de flujo axisimétrico sin y con extracción de agua por la planta a partir de un método en diferencias finitas, con la consideración de los distintos horizontes del suelo. Verificado el modelo en campo, los resultados que presenta son satisfactorios cuando no se contempla la presencia de cultivo, pero no lo son cuando interviene la extracción de agua por la planta. Por consiguiente, el grado de aceptabilidad es suficiente para fines de diseño agronómico de sistemas de riego localizado, pero no lo es para aquellos casos en que la extracción de agua por la planta interviene de manera destacada, como en el manejo y la programación de riegos.Ramírez De Cartagena Bisbe, F.; Sáinz Sánchez, MA. (1997). Modelo de distribución de agua en suelo regado por goteo. Ingeniería del Agua. 4(1):57-70. https://doi.org/10.4995/ia.1997.2716SWORD577041Armstrong C.F., Wilson T.V. (1983) Computer model for moisture distribution in stratified soils under a trickle source. Transactions of the American Society of Agricultural Engineers: 1704-1709.Belmans C., Wesswling J.G., Feddes R.A. (1983) Simulation model of the water balance of a cropped soil: SWATRE. Journal of Hidrology. 63 & 21: 271-286.Ben-Asher J., Charach CH., Zemel A. (1986) Infiltration and water extraction from trickle irrigation source: The effective hemisphere model. Soil Science Society of America Journal. 50: 882-887.Brandt A., BreslerE., Diner N., Ben-Asher J., Heller J., Goldberg. (1971) Infiltration from a trickle source: I. Mathematical models. Soil Science Society of America Proceedings, 35: 675-682.Bresler R E. (1975) Two-dimensional transport of solutes during nonsteady infiltration from a trickle source. Soil Science Society of America Proceedings, 39: 604-613.Feddes R.A., Kowalik P.J., Zaradny H. (1978) Simulation of field water use and crop yield. PUDOC, Wageningen. 189pp.Ghali S.G. (1986) Mathematical modelling of soil moisture dynamics in trickle irrigated fields. Thesis, University of Southampton (UK).Gupta S.C., Larson W.E. (1979) Estimating soil wáter retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research, 15(6): 1633-1635.Hillel D. (1977) Computer simulation of soil-waters dynamics. A compendium of recent work. IDRC, Ottawa, Canada. 214 pp.Jackson R.D. (1972) On the calculation of hydraulic conductivity. Soil Science Society of America Proceedings. 36: 380-382.Keller J. (1978) Trickle irrigation. In Irrigation (Ch. 7). National Engineering Handbook USDA-SCS.Keller J., Karmelid. (1975) Trickle irrigation design. Rain Bird Corp. Glendora, California USA. 133 pp.Khatri K.C. (1984) Simulation of soil moisture migration from a point source. Thesis, McGill University, Quebec, Canada.Kunze R.J., Uehara G., Graham K. (1968) Factors important in the calculation of hydraulic conductivity. Soil Science Soc. Amer. Proc., 32: 760-765.Lafolie F., Guenelon R., Van Genuchten M.TH. (1989a.) Analysis of water flow under trickle irrigation: I. Theory and numerical solution. Soil Science Society of America Journal, 53: 1310-1318.Lafolie P., Guenelon R., Van Genuchten M.TH. (1989b.) Analysis of water flow under trickle irrigation: II. Experimental evaluation. Soil Science Society of America Journal. 53: 1318-1323.Marino M.A., Tracy J.C. (1988) Flow of water through root-soil environment. Journal of Irrigation and Drainage Engineering, 114 (4): 588-604.Marshall T.J. (1958) A relation between permeability and size distribution of pores. Journal of Soil Science, 9 (8): 1-8.Millington R.J., Quirk J.P. (1959) Permeability of porous media Nature, 183: 378-388.Molz F.J., Remson I. (1970) Extraction term models of soil moisture use by transpiring plants. Water Resources Research, 6 (5): 1346-1356.Philip J.R. (1971) General theorem on steady infiltration from surface sources, with application to point and line sources. Soil Science Society of America Proceedings, 35: 867-871.Pradad R. (1988) A linear root water uptake model Journal of Hidrology, 99: 297-306.Raats P.A.C. (1977) Laterally confined, steady flows of water from sources and to sinks in unsaturated soils. Soil Science Society of America Journal, 41:294-304.Ramírez De Cartagena F. (1994) Simulación numerica de la dinámica del agua en el suelo. Aplicacion al diseño de sistemas de riego LAF. Tesis Doctoral. ETSEA. Universidad de Lleida.Rawls W.J., Brakensiek D.L. (1982) Estimating soil water retention from soil properties. Journal of the Irrigation and Drainage Division, Proc. of the ASCE, 108, IR2: 166-171.Saxton K.E., Rawls W.J., Romberger J.S., Papendick R.I. (1986) Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50: 1031-1036.Taghavi S.A., Mariño M.A., Rolston D.E. (1985) Infiltration from a trickle source in a heterogeneous soil medium. Journal of Hidrology, 78: 107-121.Van Der Ploeg R.R., Benecke P. (1974) Unsteady, unsaturated, n-dimensional moisture flow in soil: A computer simulation program. Soil Science Society of America Proceedings, 38: 881-885Vermeiren L., Jobling G.A. (1986) Riego localizado. Estudios FAO Riego y Drenaje, n°36. FAO. Roma. 203 pp.Warrick A.W., Lomen D.O., Amoozegarfard A. (1980) Linearized moisture flow with root extraction for three dimensional, steady conditions. Soil Science Society of America Journal, 44: 911-914

    Mixer-ejector Wall Pressure and Temperature Measurements Based on Photoluminescence

    No full text
    Ejector side-wall pressure distribution is a key indicator of supersonic jet-mixer-ejector performance. When documenting pressure patterns on an ejector wall using pressure-sensitive paint (PSP), one has to consider temperature variations caused by the supersonic jet flow within the ejector because these can cause significant local errors in the PSP results. If the temperature sensitivity of PSP is not corrected for in complex internal supersonic flows, large localized errors could contaminate the results. In the present work, temperature-sensitive paint maps the temperature distribution on the ejector wall and corrects PSP results point-by-point for temperature sensitivity. The experiments were conducted on multijet supersonic mixer-ejector configurations with straight, convergent (6-deg), and divergent (6-deg) side walls. A comparison of corrected and uncorrected PSP readings shows that at M-j = 1.55, the error with respect to true data from static pressure ports can be reduced from 4.98 to 2.84% for the case of a simple ejector with parallel walls. For the complex 6-deg convergent ejector at M-j = 1.39, the error reduces by almost an order of magnitude (from 20.83 to 2.66%). Our results indicate that the use of this correction technique can significantly reduce PSP errors in complex internal supersonic flow situations

    Aspects of urinary tract infections and antimicrobial resistance in hospitalized urology patients in Asia: 10-Year results of the Global Prevalence Study of Infections in Urology (GPIU)

    No full text
    10.1016/j.jiac.2017.11.013Journal of Infection and Chemotherapy244278-283JICH

    MODELING OF FLASHING TWO-PHASE FLOW

    No full text

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore