7 research outputs found
Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening
Aedes aegypti is the main vector of dengue fever transmission, yellow fever, Zika, and
chikungunya in tropical and subtropical regions and it is considered to cause health risks to millions
of people in the world. In this study, we search to obtain new molecules with insecticidal potential
against Ae. aegypti via virtual screening. Pyriproxyfen was chosen as a template compound to
search molecules in the database Zinc_Natural_Stock (ZNSt) with structural similarity using ROCS
(rapid overlay of chemical structures) and EON (electrostatic similarity) software, and in the final
search, the top 100 were selected. Subsequently, in silico pharmacokinetic and toxicological properties
were determined resulting in a total of 14 molecules, and these were submitted to the PASS online
server for the prediction of biological insecticide and acetylcholinesterase activities, and only two
selected molecules followed for the molecular docking study to evaluate the binding free energy
and interaction mode. After these procedures were performed, toxicity risk assessment such as LD50
values in mg/kg and toxicity class using the PROTOX online server, were undertaken. Molecule
ZINC00001624 presented potential for inhibition for the acetylcholinesterase enzyme (insect and
human) with a binding affinity value of -10.5 and -10.3 kcal/mol, respectively. The interaction with
the juvenile hormone was -11.4 kcal/mol for the molecule ZINC00001021. Molecules ZINC00001021
and ZINC00001624 had excellent predictions in all the steps of the study and may be indicated as the
most promising molecules resulting from the virtual screening of new insecticidal agents.Federal University of Amapá, Program in Biotechnology and Biodiversity-Network
BIONORTE, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) for funding in the publication of this article
Molecular dynamics, density functional, ADMET predictions, virtual screening, and molecular interaction field studies for identification and evaluation of novel potential CDK2 inhibitors in cancer therapy
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy
Computer-aided drug design and ADMET predictions for identification and evaluation of novel potential farnesyltransferase inhibitors in cancer therapy
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.CNPqCAPESFAPESPFAPER
The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance
Aspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the ΔsakA and ΔmpkCA. fumigatus and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence.The filamentous fungus Aspergillus fumigatus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global A. fumigatus phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation
Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation
To identify variables associated with successful elective extubation, and to determine neonatal morbidities associated with extubation failure in extremely preterm neonates.
This study was a secondary analysis of the National Institute of Child Health and Human Development Neonatal Research Network's Surfactant, Positive Pressure, and Oxygenation Randomized Trial that included extremely preterm infants born at 240/7 to 276/7 weeks' gestation. Patients were randomized either to a permissive ventilatory strategy (continuous positive airway pressure group) or intubation followed by early surfactant (surfactant group). There were prespecified intubation and extubation criteria. Extubation failure was defined as reintubation within 5 days of extubation.
Of 1316 infants in the trial, 1071 were eligible; 926 infants had data available on extubation status; 538 were successful and 388 failed extubation. The rate of successful extubation was 50% (188/374) in the continuous positive airway pressure group and 63% (350/552) in the surfactant group. Successful extubation was associated with higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within the first 24 hours of age and prior to extubation, lower partial pressure of carbon dioxide prior to extubation, and non-small for gestational age status after adjustment for the randomization group assignment. Infants who failed extubation had higher adjusted rates of mortality (OR 2.89), bronchopulmonary dysplasia (OR 3.06), and death/ bronchopulmonary dysplasia (OR 3.27).
Higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within first 24 hours of age, lower partial pressure of carbon dioxide and fraction of inspired oxygen prior to extubation, and nonsmall for gestational age status were associated with successful extubation. Failed extubation was associated with significantly higher likelihood of mortality and morbidities.
ClinicalTrials.gov: NCT00233324
Recommended from our members
Growth Rates of Infants Randomized to Continuous Positive Airway Pressure or Intubation After Extremely Preterm Birth.
Objective To evaluate the effects of early treatment with continuous positive airway pressure (CPAP) on nutritional intake and in-hospital growth rates of extremely preterm (EPT) infants. Study design EPT infants (240/7-276/7 weeks of gestation) enrolled in the Surfactant Positive Airway Pressure and Pulse Oximetry Trial (SUPPORT) were included. EPT infants who died before 36 weeks of postmenstrual age (PMA) were excluded. The growth rates from birth to 36 weeks of PMA and follow-up outcomes at 18-22 months corrected age of EPT infants randomized at birth to either early CPAP (intervention group) or early intubation for surfactant administration (control group) were analyzed. Results Growth data were analyzed for 810 of 1316 infants enrolled in SUPPORT (414 in the intervention group, 396 in the control group). The median gestational age was 26 weeks, and the mean birth weight was 839 g. Baseline characteristics, total nutritional intake, and in-hospital comorbidities were not significantly different between the 2 groups. In a regression model, growth rates between birth and 36 weeks of PMA, as well as growth rates during multiple intervals from birth to day 7, days 7-14, days 14-21, days 21-28, day 28 to 32 weeks PMA, and 32-36 weeks PMA did not differ between treatment groups. Independent of treatment group, higher growth rates from day 21 to day 28 were associated with a lower risk of having a Bayley-III cognitive score Conclusions EPT infants randomized to early CPAP did not have higher in-hospital growth rates than infants randomized to early intubation