40 research outputs found
The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation
In linear anisotropic elasticity, the elastic properties of a medium are
described by the fourth rank elasticity tensor C. The decomposition of C into a
partially symmetric tensor M and a partially antisymmetric tensors N is often
used in the literature. An alternative, less well-known decomposition, into the
completely symmetric part S of C plus the reminder A, turns out to be
irreducible under the 3-dimensional general linear group. We show that the
SA-decomposition is unique, irreducible, and preserves the symmetries of the
elasticity tensor. The MN-decomposition fails to have these desirable
properties and is such inferior from a physical point of view. Various
applications of the SA-decomposition are discussed: the Cauchy relations
(vanishing of A), the non-existence of elastic null Lagrangians, the
decomposition of the elastic energy and of the acoustic wave propagation. The
acoustic or Christoffel tensor is split in a Cauchy and a non-Cauchy part. The
Cauchy part governs the longitudinal wave propagation. We provide explicit
examples of the effectiveness of the SA-decomposition. A complete class of
anisotropic media is proposed that allows pure polarizations in arbitrary
directions, similarly as in an isotropic medium.Comment: 1 figur
Chapter 20 Assessment of radiation pollution from nuclear power plants
Nuclear power plants split uranium atoms in a process called fission. In a nuclear power plant, heat is generated to produce steam that spins a turbine to generate electricity. Nuclear energy has been proposed in response to the need for a clean energy source compared to CO2 production plants. However, nuclear energy is not necessarily a source of clean energy as nuclear power plants release small amounts of greenhouse emissions in activities related to building and running the plant. Moreover, even if all safety measures are followed, there is no guarantee that an accident will not occur in a nuclear power plant. In the case of an accident involving a nuclear power plant, the environment and the people around it may be exposed to high levels of radiation. Another important environmental problem related to nuclear energy is the generation of radioactive waste that can remain radioactive and dangerous to human health for thousands of years. There are also several issues with burying the radioactive waste. Here, we describe different types of radioactive waste pollution from nuclear power plants, their environmental effects, nuclear regulations, and nuclear power plant incidents. Moreover, two case studies on nuclear power plant accidents and their consequences are discussed
Recommended from our members
Germination of Range Plant Seeds at Fixed Temperatures
Low temperatures in the 4-10C (39-50F) range were found in the laboratory to delay germination of pasture plants, especially of perenial grasses. Analysis of meteorological data showed temperatures in this range to be prevalent during rainfall periods in the winter (sowing) season in Israel's semi-arid South, and they are considered a critical factor in seeding perennial grasses on arid range. Germination may be improved by agronomic measures, such as plant selection and breeding for cold resistance and seedling vigour, timing of seeding operations, and soil surface treatments to increase soil temperature.This material was digitized as part of a cooperative project between the Society for Range Management and the University of Arizona Libraries.The Journal of Range Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202