64 research outputs found

    Quasi free-standing epitaxial graphene fabrication on 3C-SiC/Si(111)

    Full text link
    © 2018 IOP Publishing Ltd. Growing graphene on SiC thin films on Si is a cheaper alternative to the growth on bulk SiC, and for this reason it has been recently intensively investigated. Here we study the effect of hydrogen intercalation on epitaxial graphene obtained by high temperature annealing on 3C-SiC/Si(111) in ultra-high vacuum. By using a combination of core-level photoelectron spectroscopy, low energy electron diffraction, and near-edge x-ray absorption fine structure (NEXAFS) we find that hydrogen saturates the Si atoms at the topmost layer of the substrate, leading to free-standing graphene on 3C-SiC/Si(111). The intercalated hydrogen fully desorbs after heating the sample at 850 °C and the buffer layer appears again, similar to what has been reported for bulk SiC. However, the NEXAFS analysis sheds new light on the effect of hydrogen intercalation, showing an improvement of graphene's flatness after annealing in atomic H at 600 °C. These results provide new insight into free-standing graphene fabrication on SiC/Si thin films

    Effect of Methionine Supplementation During Late Gestation in Beef Females

    Get PDF
    Some amino acids are known to be essential to cattle and effect protein availability to the animal, especially during gestation when nutrient requirements are higher. Methionine is found to be one of the most limiting in low quality forage diets. Two 3-yr studies were performed to evaluate the impact of methionine supplementation during late gestation on intake, body weight, average daily gain, and subsequent calf performance in primiparous and multiparous females. In exp 1, 120 artificially inseminated pregnancy heifers were placed in a Calan gate feeding system (n=40/yr) and assigned 1 of 3 treatments during late gestation and fed ad libitum grass hay with either: no supllement, 2 lbs. distillers based supplement with 1 oz of rumen protected methionine. In exp 2, multiparous cows on upland winter range were fed 1 of 5 treatments; no supplement, ad libitum meadow hay, 1 lb. of a distiller\u27s based cube, 2 lb. of a distiller\u27s based cube, or 2 lb. of a distiller\u27s based cube plus 1 oz of a rumen protected methionine. Body weight, body condition score, reproductive responses, and subequent calf performance were recorded in both studies. No differences were observed in calving performance or progeny carcass characteristics in either experiment in response to methionine supplementation, so it may not be a necessary supplementation strategy

    A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene

    Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing

    Full text link
    ©2015 American Physical Society. X-ray absorption near-edge spectroscopy, photoluminescence, cathodoluminescence, and Raman spectroscopy have been used to investigate the chemical states of nitrogen dopants in ZnO nanowires. It is found that nitrogen exists in multiple states: NO,NZn, and loosely bound N2 molecule. The results establish a direct link between a donor-acceptor pair emission at 3.232 eV and the concentration of loosely bound N2. This work confirms that N2 at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO as theoretically predicted by Lambrecht and Boonchun [Phys. Rev. B 87, 195207 (2013)10.1103/PhysRevB.87.195207]. Additionally, shallow acceptor states arising from NO complexes have been ruled out in this paper

    NEXAFS N K-edge study of the bonding structure on Al/Si doped sputtered CrN coatings

    Get PDF
    Chromium nitride (CrN)-based materials display broad applications as protective coatings for automotive, power generation and aerospace industries, in which surfaces are often subjected to wear and corrosion. By using an appropriate choice of dopant, one can further increase the mechanical hardness, corrosion and oxidation resistance of these coatings. In order to identify the effect of dopants on the structural evolution and surface electronic properties of CrN coatings, Cr1-z(Al/Si)zN coatings were prepared by magnetron sputtering and then characterized via X-ray diffraction (XRD) and soft X-ray synchrotron radiation Near-edge X-ray Absorption Fine Structure (NEXAFS) studies around N K-edge. Higher degree of crystallinity of the coatings were identified through XRD studies. The bonding structure, of the doped CrN coating, was analyzed by Near-edge X-ray Absorption Fine Structure (NEXAFS) measurements performed around the N K-edge (390–450 eV) in the Auger electron yield (AEY) and total fluorescence yield (TFY) modes. NEXAFS analysis revealed Cr3d(Al3p/Si3p)N2p hybridizations in Cr1-z(Al/Si)zN compositions and complex structure splitting via spin–orbit interaction of the Cr3d levels

    Livestock trade networks for guiding animal health surveillance

    Get PDF
    BACKGROUND: Trade in live animals can contribute to the introduction of exotic diseases, the maintenance and spread endemic diseases. Annually millions of animals are moved across Europe for the purposes of breeding, fattening and slaughter. Data on the number of animals moved were obtained from the Directorate General Sanco (DG Sanco) for 2011. These were converted to livestock units to enable direct comparison across species and their movements were mapped, used to calculate the indegrees and outdegrees of 27 European countries and the density and transitivity of movements within Europe. This provided the opportunity to discuss surveillance of European livestock movement taking into account stopping points en-route. RESULTS: High density and transitivity of movement for registered equines, breeding and fattening cattle, breeding poultry and pigs for breeding, fattening and slaughter indicates that hazards have the potential to spread quickly within these populations. This is of concern to highly connected countries particularly those where imported animals constitute a large proportion of their national livestock populations, and have a high indegree. The transport of poultry (older than 72 hours) and unweaned animals would require more rest breaks than the movement of weaned animals, which may provide more opportunities for disease transmission. Transitivity is greatest for animals transported for breeding purposes with cattle, pigs and poultry having values of over 50%. CONCLUSIONS: This paper demonstrated that some species (pigs and poultry) are traded much more frequently and at a larger scale than species such as goats. Some countries are more vulnerable than others due to importing animals from many countries, having imported animals requiring rest-breaks and importing large proportions of their national herd or flock. Such knowledge about the vulnerability of different livestock systems related to trade movements can be used to inform the design of animal health surveillance systems to facilitate the trade in animals between European member states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0354-4) contains supplementary material, which is available to authorized users

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Behavioural changes in dairy cows with lameness in an automatic milking system

    Get PDF
    There is a tendency worldwide for the automation of farms; this has included the introduction of automatic milking systems (AMS) in the dairy industry. Lameness in dairy cows is highly prevalent and painful. These impacts potentially affect not only animal welfare, but also farm economies. Three independent observational studies were carried out to assess the impact of lameness on the behaviour of zero grazed high yielding Holstein cows managed in an AMS. The aim of the first study was to examine the impact of lameness on rumination time, the second study investigated differences between lame and sound dairy cows in total eating time and the third study assessed the impact of lameness on milking behaviour (frequency and time of visits to the AMS). In the first study data from 150 cows were used to analyse rumination (collected using rumination collars) for the 48hr following locomotion scoring. A multilevel linear regression demonstrated that lameness had a small but significant negative association (coefficient: -7.88 (SE: 3.93)) with rumination. In the second study the behaviour of eleven matched lame and sound pairs of cows at the feed face was analysed for 24 hours after locomotion scoring. Each feeding behaviour variable (total duration time, frequency of feeding bouts and length of bouts) was analysed using individual single level regression models. There was a significant negative association between total feeding time and lameness (coefficient: -73.65 (SE: 25.47)) and the frequency of feeding bouts and lameness (-9.93 (2.49)). Finally, the third observational study used 38 matched pairs of lame and sound cows. Data on the number and timings of visits to the AMS were collected for 24 hours after each locomotion score and analysed using a binomial logistic regression model. There was a significant difference in AMS visits between groups; lame animals visiting the robot less frequently than sound cows (median difference 0.50 milking visits; T = 256.0; N = 25; p = 0.01) and lame cows were 0.33 times less likely to visit the AMS between 24:01 and 06:00. Results from these studies reveal that lameness in an AMS affected feeding behaviour, rumination and AMS visits. All of these impacts are likely to have negative consequences for farm profitability, but also implications for the health and welfare of the animals
    • …
    corecore