609 research outputs found

    Better than ℓ0 recovery via blind identification

    Get PDF

    Learning about knowledge: A complex network approach

    Full text link
    This article describes an approach to modeling knowledge acquisition in terms of walks along complex networks. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks, i.e. networks composed of successive interconnected layers, arise naturally as a consequence of compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks, i.e. unreachable nodes, the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barab\'asi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaux of knowledge stagnation in the case of the preferential movements strategy in presence of conditional edges.Comment: 18 pages, 19 figure

    Hyperon Nonleptonic Weak Decays Revisited

    Full text link
    We first review the current algebra - PCAC approach to nonleptonic octet baryon 14 weak decay B (\to) (B^{\prime})(\pi) amplitudes. The needed four parameters are independently determined by (\Omega \to \Xi \pi),(\Lambda K) and (\Xi ^{-}\to \Sigma ^{-}\gamma) weak decays in dispersion theory tree order. We also summarize the recent chiral perturbation theory (ChPT) version of the eight independent B (\to) (B^{\prime}\pi) weak (\Delta I) = 1/2 amplitudes containing considerably more than eight low-energy weak constants in one-loop order.Comment: 10 pages, RevTe

    Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    Full text link
    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong Coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with it ab initio} electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.Comment: Accepted for publication in Proc. Natl. Acad. Sci. US

    Roughness of Sandpile Surfaces

    Full text link
    We study the surface roughness of prototype models displaying self-organized criticality (SOC) and their noncritical variants in one dimension. For SOC systems, we find that two seemingly equivalent definitions of surface roughness yields different asymptotic scaling exponents. Using approximate analytical arguments and extensive numerical studies we conclude that this ambiguity is due to the special scaling properties of the nonlinear steady state surface. We also find that there is no such ambiguity for non-SOC models, although there may be intermediate crossovers to different roughness values. Such crossovers need to be distinguished from the true asymptotic behaviour, as in the case of a noncritical disordered sandpile model studied in [10].Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.

    Message Transfer in a Communication Network

    Full text link
    We study message transfer in a 2−d2-d communication network of regular nodes and randomly distributed hubs. We study both single message transfer and multiple message transfer on the lattice. The average travel time for single messages travelling between source and target pairs of fixed separations shows q−q-exponential behaviour as a function of hub density with a characteristic power-law tail, indicating a rapid drop in the average travel time as a function of hub density. This power-law tail arises as a consequence of the log-normal distribution of travel times seen at high hub densities. When many messages travel on the lattice, a congestion-decongestion transition can be seen. The waiting times of messages in the congested phase show a Gaussian distribution, whereas the decongested phase shows a log-normal distribution. Thus, the congested or decongested behaviour is encrypted in the behaviour of the waiting time distributions.Comment: 7 Pages, 6 figure, to appear in the Proceeding of the conference Perspectives in Nonlinear Dynamics 2007, a special issue of the Journal Praman

    Mirror matter admixtures and isospin breaking in the \Delta I=1/2 rule in \Omega^- two body non-leptonic decays

    Full text link
    We discuss a description of \Omega^- two body non-leptonic decays based on possible, albeit tiny, admixtures of mirror matter in ordinary hadrons. The \Delta I=1/2 rule enhancement is obtained as a result of isospin symmetry and, more importantly, the rather large observed deviations from this rule result from small isospin breaking. This analysis lends support to the possibility that the enhancement phenomenon observed in low energy weak interactions may be systematically described by mirror matter admixtures in ordinary hadrons.Comment: Changed conten

    An Effective Field Theory Calculation of the Parity Violating Asymmetry in n+p -> d+gamma

    Full text link
    Weak interactions are expected to induce a parity violating pion-nucleon coupling, h_{\pi NN}^{(1)}. This coupling should be measurable in a proposed experiment to study the parity violating asymmetry A_\gamma in the process \vec n + p \to d+\gamma. We compute the leading dependence of A_\gamma on the coupling h_{\pi NN}^{(1)} using recently developed effective field theory techniques and find an asymmetry of A_\gamma = +0.17 h_{\pi NN}^{(1)} at leading order. This asymmetry has the opposite sign to that given by Desplanques, Donoghue and Holstein.Comment: 7 pages, 2 figures from 3 eps files, late
    • 

    corecore