249 research outputs found
Phase formation processes and synthesis of solid solutions in Ca-R-Nb-M-O systems
During the study of the phase formation process in Ca-R-Nb-M-O systems (R=La, Bi, M=Mo, W), an attempt was made to obtain single-phase compounds of CaRNbMO8 composition by the standard ceramic technique. In addition, samples based on LaNbO4, CaWO4, BiNbO4 were also synthesized by the standard ceramic technique. The phase composition of the samples was studied by XRD analysis. The electrical conductivity of the obtained solid solutions and potential composite materials was investigated by impedance spectroscopy
Constraining the low energy pion electromagnetic form factor with space-like data
The pionic contribution to the g-2 of the muon involves a certain integral
over the the modulus squared of F_\pi(t), the pion electromagnetic form factor.
We extend techniques that use cut-plane analyticity properties of F_\pi(t) in
order to account for present day estimates of the pionic contribution and
experimental information at a finite number of points in the space-like region.
Using data from several experiments over a large kinematic range for |t|, we
find bounds on the expansion coefficients of F_\pi(t), sub-leading to the
charge radius. The value of one of these coefficients in chiral perturbation
theory respects these bounds. Furthermore, we present a sensitivity analysis to
the inputs. A brief comparison with results in the literature that use
observables other than the g-2 and timelike data is presented.Comment: 11 pages in EPJ journal style, to appear in European Physical Journal
RQM description of the charge form factor of the pion and its asymptotic behavior
The pion charge and scalar form factors, and , are first
calculated in different forms of relativistic quantum mechanics. This is done
using the solution of a mass operator that contains both confinement and
one-gluon-exchange interactions. Results of calculations, based on a one-body
current, are compared to experiment for the first one. As it could be expected,
those point-form, and instant and front-form ones in a parallel momentum
configuration fail to reproduce experiment. The other results corresponding to
a perpendicular momentum configuration (instant form in the Breit frame and
front form with ) do much better. The comparison of charge and scalar
form factors shows that the spin-1/2 nature of the constituents plays an
important role. Taking into account that only the last set of results
represents a reasonable basis for improving the description of the charge form
factor, this one is then discussed with regard to the asymptotic QCD-power-law
behavior . The contribution of two-body currents in achieving the right
power law is considered while the scalar form factor, , is shown to
have the right power-law behavior in any case. The low- behavior of the
charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure
Scaling study of the pion electroproduction cross sections and the pion form factor
The H()n cross section was measured for a range of
four-momentum transfer up to =3.91 GeV at values of the invariant
mass, , above the resonance region. The -dependence of the longitudinal
component is consistent with the -scaling prediction for hard exclusive
processes. This suggests that perturbative QCD concepts are applicable at
rather low values of . Pion form factor results, while consistent with the
-scaling prediction, are inconsistent in magnitude with perturbative QCD
calculations. The extraction of Generalized Parton Distributions from hard
exclusive processes assumes the dominance of the longitudinal term. However,
transverse contributions to the cross section are still significant at
=3.91 GeV.Comment: 6 pages, 3 figure
Separated Kaon Electroproduction Cross Section and the Kaon Form Factor from 6 GeV JLab Data
The () reaction was studied as a function of
the Mandelstam variable using data from the E01-004 (FPI-2) and E93-018
experiments that were carried out in Hall C at the 6 GeV Jefferson Lab. The
cross section was fully separated into longitudinal and transverse components,
and two interference terms at four-momentum transfers of 1.00, 1.36 and
2.07 GeV. The kaon form factor was extracted from the longitudinal cross
section using the Regge model by Vanderhaeghen, Guidal, and Laget. The results
establish the method, previously used successfully for pion analyses, for
extracting the kaon form factor. Data from 12 GeV Jefferson Lab experiments are
expected to have sufficient precision to distinguish between theoretical
predictions, for example recent perturbative QCD calculations with modern
parton distribution amplitudes. The leading-twist behavior for light mesons is
predicted to set in for values of between 5-10 GeV, which makes data
in the few GeV regime particularly interesting. The dependence at fixed
and of the longitudinal cross section we extracted seems consistent
with the QCD factorization prediction within the experimental uncertainty
Pion and Vector Meson Form Factors in the Kuperstein-Sonnenschein holographic model
We study phenomenological aspects of the holographic model of chiral symmetry
breaking recently introduced by Kuperstein and Sonnenschein (KS). As a first
step, we calculate the spectrum of vector and axial-vector mesons in the KS
model. We numerically compute various coupling constants of the mesons and
pions. Our analysis indicates that vector meson dominance is realized in this
model. The pion, vector meson and axial-vector meson form factors are obtained
and studied in detail. We find good agreement with QCD results. In particular,
the pion form factor closely matches available experimental data.Comment: v1: 27 pages, 9 figures, 4 tables; v2: minor changes, added more
general discussion of vector meson dominance; v3: minor changes and
additions, version accepted for publication in JHE
Nuclear transparency and effective kaon-nucleon cross section from the A(e, e'K+) reaction
We have determined the transparency of the nuclear medium to kaons from
measurements on C, Cu, and Au targets.
The measurements were performed at the Jefferson Laboratory and span a range in
four-momentum-transfer squared Q=1.1 -- 3.0 GeV. The nuclear
transparency was defined as the ratio of measured kaon electroproduction cross
sections with respect to deuterium, (). We further
extracted the atomic number () dependence of the transparency as
parametrized by and, within a simple model assumption,
the in-medium effective kaon-nucleon cross sections. The effective cross
sections extracted from the electroproduction data are found to be smaller than
the free cross sections determined from kaon-nucleon scattering experiments,
and the parameter was found to be significantly larger than those
obtained from kaon-nucleus scattering. We have included similar comparisons
between pion- and proton-nucleon effective cross sections as determined from
electron scattering experiments, and pion-nucleus and proton-nucleus scattering
data.Comment: 7 pages, 5 figure
- …