138 research outputs found
Phase formation processes and synthesis of solid solutions in Ca-R-Nb-M-O systems
During the study of the phase formation process in Ca-R-Nb-M-O systems (R=La, Bi, M=Mo, W), an attempt was made to obtain single-phase compounds of CaRNbMO8 composition by the standard ceramic technique. In addition, samples based on LaNbO4, CaWO4, BiNbO4 were also synthesized by the standard ceramic technique. The phase composition of the samples was studied by XRD analysis. The electrical conductivity of the obtained solid solutions and potential composite materials was investigated by impedance spectroscopy
Scaling of the F_2 structure function in nuclei and quark distributions at x>1
We present new data on electron scattering from a range of nuclei taken in
Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the
cross section for , which is sensitive to short range contributions to the
nuclear wave-function, and in deep inelastic scattering corresponds to probing
extremely high momentum quarks. This result agrees with higher energy muon
scattering measurements, but is in sharp contrast to neutrino scattering
measurements which suggested a dramatic enhancement in the distribution of the
`super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in
^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie
Measurement of the Charged Pion Electromagnetic Form Factor
Separated longitudinal and transverse structure functions for the reaction
1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6
(GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion
charge form factor were extracted from the longitudinal cross section by using
a recently developed Regge model. The results indicate that the pion form
factor in this region is larger than previously assumed and is consistent with
a monopole parameterization fitted to very low Q2 elastic data.Comment: 5 pages, 3 figure
Transverse momentum dependence of semi-inclusive pion production
Cross sections for semi-inclusive electroproduction of charged pions
() from both proton and deuteron targets were measured for
, GeV, , and GeV. For
GeV, we find the azimuthal dependence to be small, as expected
theoretically. For both and , the dependence from the
deuteron is found to be slightly weaker than from the proton. In the context of
a simple model, this implies that the initial transverse momenta width of
quarks is larger than for quarks and, contrary to expectations, the
transverse momentum width of the favored fragmentation function is larger than
the unfavored one.Comment: 15 pages, 4 figures. Fit form changed to include Cahn effect Minor
revisions. Added one new figur
The Onset of Quark-Hadron Duality in Pion Electroproduction
A large data set of charged-pion electroproduction from both hydrogen and
deuterium targets has been obtained spanning the low-energy residual-mass
region. These data conclusively show the onset of the quark-hadron duality
phenomenon, as predicted for high-energy hadron electroproduction. We construct
several ratios from these data to exhibit the relation of this phenomenon to
the high-energy factorization ansatz of electron-quark scattering and
subsequent quark-to- pion production mechanisms.Comment: 11 pages, 3 figures, accepted in Phys. Rev. Lett. Tables adde
Applications of quark-hadron duality in F2 structure function
Inclusive electron-proton and electron-deuteron inelastic cross sections have
been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken
x, up to 0.92, and four-momentum transfer squared Q2 up to 7.5 GeV2 in the
experiment E00-116. These measurements are used to extend to larger x and Q2
precision, quantitative, studies of the phenomenon of quark-hadron duality. Our
analysis confirms, both globally and locally, the apparent violation of
quark-hadron duality previously observed at a Q2 of 3.5 GeV2 when resonance
data are compared to structure function data created from CTEQ6M and MRST2004
parton distribution functions (PDFs). More importantly, our new data show that
this discrepancy saturates by Q2 ~ 4 Gev2, becoming Q2 independent. This
suggests only small violations of Q2 evolution by contributions from the
higher-twist terms in the resonance region which is confirmed by our
comparisons to ALEKHIN and ALLM97.We conclude that the unconstrained strength
of the CTEQ6M and MRST2004 PDFs at large x is the major source of the
disagreement between data and these parameterizations in the kinematic regime
we study and that, in view of quark-hadron duality, properly averaged resonance
region data could be used in global QCD fits to reduce PDF uncertainties at
large x.Comment: 35 page
- …