129 research outputs found
Plastid located WHIRLY1 enhances the responsiveness of Arabidopsis seedlings toward abscisic acid
WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously
Effect of the strigolactone analogs methyl phenlactonoates on spore germination and root colonization of arbuscular mycorrhizal fungi
Strigolactones (SLs), a novel class of plant hormones, are key regulator of plant architecture and mediator of biotic interactions in the rhizosphere. Root-released SLs initiate the establishment of arbuscular mycorrhizal (AM) symbiosis by inducing spore germination and hyphal branching in AM fungi (AMF). However, these compounds also trigger the germination of root parasitic weeds, paving the way for deleterious infestation. Availability of SLs is required for investigating of their functions and also for application in agriculture. However, natural SLs are difficult to synthesize due to their complex structure and cannot be isolated at large scale, as they are released at very low concentrations. Therefore, there is a need for synthetic SL analogs. Recently, we reported on the development of simple SL analogs, methyl phenlactonoates (MPs), which show high SL activity in plants. Here, we investigate the effect of MP1, MP3 and the widely used SL-analog GR24 on AMF spore germination and host root colonization. Our results show that MP1 and MP3 inhibit AMF spore germination, but promote the intra-radical root colonization, both more efficiently than GR24. These results indicate that field application of MP1 and MP3 does not have negative impact on mycorrhizal fungi. In conclusion, our data together with the previously reported simple synthesis, high activity in regulating plant architecture and inducing Striga seed germination, demonstrate the utility of MP1 and MP3 as for field application in combating root parasitic weeds by inducing germination in host's absence
A role of brassinosteroids in early fruit development in cucumber
Brassinosteroids (BRs) are essential for many biological processes in plants, however, little is known about their roles in early fruit development. To address this, BR levels were manipulated through the application of exogenous BRs (24-epibrassinolide, EBR) or a BR biosynthesis inhibitor (brassinazole, Brz) and their effects on early fruit development, cell division, and expression of cyclin and cyclin-dependent kinases (CDKs) genes were examined in two cucumber cultivars that differ in parthenocarpic capacity. The application of EBR induced parthenocarpic growth accompanied by active cell division in Jinchun No. 4, a cultivar without parthenocarpic capacity, whereas Brz treatment inhibited fruit set and, subsequently, fruit growth in Jinchun No. 2, a cultivar with natural parthenocarpic capacity, and this inhibitory effect could be rescued by the application of EBR. RT-PCR analysis showed both pollination and EBR induced expression of cell cycle-related genes (CycA, CycB, CycD3;1, CycD3;2, and CDKB) after anthesis. cDNA sequences for CsCycD3;1 and CsCycD3;2 were isolated through PCR amplification. Both CsCycD3;1 and CsCycD3;2 transcripts were up-regulated by EBR treatment and pollination but strongly repressed by Brz treatment. Meanwhile, BR6ox1 and SMT transcripts, two genes involved in BR synthesis, exhibited feedback regulation. These results strongly suggest that BRs play an important role during early fruit development in cucumber
Human papillomavirus vaccine to prevent cervical intraepithelial neoplasia in Japan: A nationwide case-control study
Ikeda, S, Ueda, Y, Hara, M, et al. Human papillomavirus vaccine to prevent cervical intraepithelial neoplasia in Japan: A nationwide case‐control study. Cancer Sci. 2020; 00: 1– 8. https://doi.org/10.1111/cas.14682
Hormonal regulation of temperature-induced growth in Arabidopsis
[EN] Successful plant survival depends upon the proper integration of information from the environment with endogenous cues to regulate growth and development. We have investigated the interplay between ambient temperature and hormone action during the regulation of hypocotyl elongation, and we have found that gibberellins (GAs) and auxin are quickly and independently recruited by temperature to modulate growth rate, whereas activity of brassinosteroids (BRs) seems to be required later on. Impairment of GA biosynthesis blocked the increased elongation caused at higher temperatures, but hypocotyls of pentuple DELLA knockout mutants still reduced their response to higher temperatures when BR synthesis or auxin polar transport were blocked. The expression of several key genes involved in the biosynthesis of GAs and auxin was regulated by temperature, which indirectly resulted in coherent variations in the levels of accumulation of nuclear GFP-RGA (repressor of GA1) and in the activity of the DR5 reporter. DNA microarray and genetic analyses allowed the identification of the transcription factor PIF4 (phytochrome-interacting factor 4) as a major target in the promotion of growth at higher temperature. These results suggest that temperature regulates hypocotyl growth by individually impinging on several elements of a pre-existing network of signaling pathways involving auxin, BRs, GAs, and PIF4.We thank G. Choi (KAIST, Daejeon, South Korea), C. Fankhauser (University of Lausanne, Lausanne, Switzerland), T. Guilfoyle (Department of Biochemistry, University of Missouri, MO, USA), N. P. Harberd (Department of Plant Sciences, University of Oxford, Oxford, UK), E. Huq (University of Texas, Austin, TX, USA), T-p Sun (Department of Biology, Duke University, Durham, USA), S. G. Thomas (Rothamsted Research, Hertfordshire, UK), G. Vert (Institut de Biologie Integrative des Plantes, Montpellier, France), Z. Y. Wang (Department of Plant Biology, Carnegie Institution, Stanford, USA), Y. Yin (Plant Science Institute, Iowa State University, Ames, IA, USA), and the Arabidopsis Biological Resource Center for seeds; and X. W. Deng (Yale University, New Haven, CT, USA) for antibodies against RPT5. We also thank Dr Jorge Casal (Universidad de Buenos Aires, Buenos Aires, Argentina) for helpful suggestions on this work. Work in the authors' laboratories is funded by grant BIO2007-60923 from the Spanish Ministry of Science and Innovation and by grant 167890/110 from the Norwegian Research Council. JG-B was supported by a JAE pre-doctoral fellowship from CSIC.Stavang, JA.; Gallego-Bartolomé, J.; Gómez Jiménez, MD.; Yoshida, S.; Asami, T.; Olsen, JE.; García-Martínez, JL.... (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. The Plant Journal. 60(4):589-601. https://doi.org/10.1111/j.1365-313X.2009.03983.x58960160
Effects of Triazole Derivatives on Strigolactone Levels and Growth Retardation in Rice
We previously discovered a lead compound for strigolactone (SL) biosynthesis inhibitors, TIS13 (2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol-1-yl)heptan-3-ol). Here, we carried out a structure-activity relationship study of TIS13 to discover more potent and specific SL biosynthesis inhibitor because TIS13 has a severe side effect at high concentrations, including retardation of the growth of rice seedlings. TIS108, a new TIS13 derivative, was found to be a more specific SL biosynthesis inhibitor than TIS13. Treatment of rice seedlings with TIS108 reduced SL levels in both roots and root exudates in a concentration-dependent manner and did not reduce plant height. In addition, root exudates of TIS108-treated rice seedlings stimulated Striga germination less than those of control plants. These results suggest that TIS108 has a potential to be applied in the control of root parasitic weeds germination
BPG4 regulates chloroplast development and homeostasis by suppressing GLK transcription factors and involving light and brassinosteroid signaling
葉緑体の発達を適正に制御する新しい因子を発見. 京都大学プレスリリース. 2024-01-23.Chloroplast development adapts to the environment for performing suitable photosynthesis. Brassinosteroids (BRs), plant steroid hormones, have crucial effects on not only plant growth but also chloroplast development. However, the detailed molecular mechanisms of BR signaling in chloroplast development remain unclear. Here, we identify a regulator of chloroplast development, BPG4, involved in light and BR signaling. BPG4 interacts with GOLDEN2-LIKE (GLK) transcription factors that promote the expression of photosynthesis-associated nuclear genes (PhANGs), and suppresses their activities, thereby causing a decrease in the amounts of chlorophylls and the size of light-harvesting complexes. BPG4 expression is induced by BR deficiency and light, and is regulated by the circadian rhythm. BPG4 deficiency causes increased reactive oxygen species (ROS) generation and damage to photosynthetic activity under excessive high-light conditions. Our findings suggest that BPG4 acts as a chloroplast homeostasis factor by fine-tuning the expression of PhANGs, optimizing chloroplast development, and avoiding ROS generation
- …