1,185 research outputs found

    In-situ growth of superconducting NdFeAs(O,F) thin films by Molecular Beam Epitaxy

    Full text link
    The recently discovered high temperature superconductor F-doped LaFeAsO and related compounds represent a new class of superconductors with the highest transition temperature (Tc) apart from the cuprates. The studies ongoing worldwide are revealing that these Fe-based superconductors are forming a unique class of materials that are interesting from the viewpoint of applications. To exploit the high potential of the Fe-based superconductors for device applications, it is indispensable to establish a process that enables the growth of high quality thin films. Efforts of thin film preparation started soon after the discovery of Fe-based superconductors, but none of the earlier attempts had succeeded in an in-situ growth of a superconducting film of LnFeAs(O,F) (Ln=lanthanide), which exhibits the highest Tc to date among the Fe-based superconductors. Here, we report on the successful growth of NdFeAs(O,F) thin films on GaAs substrates, which showed well-defined superconducting transitions up to 48 K without the need of an ex-situ heat treatment

    Analysis of interdiffusion between SmFeAsO0.92F0.08 and metals for ex situ fabrication of superconducting wire

    Full text link
    We demonstrate the fabrication of superconducting SmFeAsO1-xFx (Sm-1111) wires by using the ex-situ powder-in-tube technique. Sm-1111 powder and a binder composed of SmF3, samarium arsenide, and iron arsenide were used to synthesize the superconducting core. Although the F content of Sm-1111 is reduced in the process of ex-situ fabrication, the binder compensates by sufficiently supplementing the F content, thereby preventing a decrease in the superconducting transition temperature and a shrinking of the superconducting volume fraction. Thus, in the superconducting Sm-1111 wire with the binder, the transport critical current density reaches the highest value of ~4000 A/cm2 at 4.2 K

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

    Full text link
    We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.Comment: 6 pages, 11 figure

    Comparison of the Effects of Two Types of Stretching Warm Ups for Rehabilitation

    Get PDF
    This pilot study compares the effects of static therapeutic trunk stretching using an unstable flex chair, a stretching bench and a stretching stick on physical fitness with those of a general Japanese style of static stretching. The participants underwent physical fitness tests. Before and after warming up using a general Japanese style of stretching and trunk treatment stretching. Twenty-three healthy college students (age, 20.7 ± 1.2 years; height, 165.3 ± 7.6 cm; weight, 59.0 ± 9.7 kg; BMI 21.4 ± 2.3) were enrolled in this study. The physical fitness test assesses grip strength, sit-ups, eyes-closed single-leg stance, sit-and-reach flexibility, six-minute walk, and ten-meter obstacle course. The participants performed vertical jump, forward standing flexion measured using the analog flexion meter, thoracolumbar extension, horizontal flexure, deep forward bow. These results suggest that trunk stretching improves flexibility, walking ability, endurance and explosive power more effectively than the general Japanese style of stretching. Three static trunk stretches can improve flexibility, walking ability, endurance and explosive power. Trunk treatment stretching before physical activity might reduce the incidence of injury and improve the physical performance of individuals who participate in exercise, athletes and injured persons undergoing rehabilitation.ArticleBAOJ Medical and nursing.1(1):003(2015)journal articl

    Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs

    Get PDF
    SummaryObjectiveThe induction of synovial tissue to the meniscal lesion is crucial for meniscal healing. Synovial Mesenchymal stem cells (MSCs) are an attractive cell source because of their high proliferative and chondrogenic potentials. We examined whether transplantation of synovial MSCs promoted healing after meniscal repair of extended longitudinal tear of avascular area in a microminipig model.DesignLongitudinal tear lesion was made in medial menisci and sutured in both knees, and then a synovial MSC suspension was administered for 10 min only in unilateral knee. The sutured meniscus was evaluated morphologically and biomechanically at 2, 4, and 12 weeks. The behavior of transplanted MSCs was also examined.ResultsThe meniscal healing at 12 weeks was significantly better in the MSC group than in the control group; macroscopically, histologically and by T1rho mapping analysis. Transmission electron microscopic analysis demonstrated that the meniscus lesion was occupied by dense collagen fibrils only in the MSC group. Biomechanical analysis revealed that the tensile strength to failure of the meniscus higher in the MSC group than in the control group in each microminipig. Synovial tissue covered better along the superficial layer from the outer zone into the lesion of the meniscus in the MSC group at 2 and 4 weeks in each microminipig. Synovial MSCs labeled with ferucarbotran were detected in the meniscus lesion and adjacent synovium by MRI at 2 weeks.ConclusionTransplantation of synovial MSCs promoted healing after meniscal repair with induction of synovium into the longitudinal tear in the avascular zone of meniscus in pigs
    corecore