1,381 research outputs found

    In-situ growth of superconducting NdFeAs(O,F) thin films by Molecular Beam Epitaxy

    Full text link
    The recently discovered high temperature superconductor F-doped LaFeAsO and related compounds represent a new class of superconductors with the highest transition temperature (Tc) apart from the cuprates. The studies ongoing worldwide are revealing that these Fe-based superconductors are forming a unique class of materials that are interesting from the viewpoint of applications. To exploit the high potential of the Fe-based superconductors for device applications, it is indispensable to establish a process that enables the growth of high quality thin films. Efforts of thin film preparation started soon after the discovery of Fe-based superconductors, but none of the earlier attempts had succeeded in an in-situ growth of a superconducting film of LnFeAs(O,F) (Ln=lanthanide), which exhibits the highest Tc to date among the Fe-based superconductors. Here, we report on the successful growth of NdFeAs(O,F) thin films on GaAs substrates, which showed well-defined superconducting transitions up to 48 K without the need of an ex-situ heat treatment

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Comparison of the Effects of Two Types of Stretching Warm Ups for Rehabilitation

    Get PDF
    This pilot study compares the effects of static therapeutic trunk stretching using an unstable flex chair, a stretching bench and a stretching stick on physical fitness with those of a general Japanese style of static stretching. The participants underwent physical fitness tests. Before and after warming up using a general Japanese style of stretching and trunk treatment stretching. Twenty-three healthy college students (age, 20.7 ± 1.2 years; height, 165.3 ± 7.6 cm; weight, 59.0 ± 9.7 kg; BMI 21.4 ± 2.3) were enrolled in this study. The physical fitness test assesses grip strength, sit-ups, eyes-closed single-leg stance, sit-and-reach flexibility, six-minute walk, and ten-meter obstacle course. The participants performed vertical jump, forward standing flexion measured using the analog flexion meter, thoracolumbar extension, horizontal flexure, deep forward bow. These results suggest that trunk stretching improves flexibility, walking ability, endurance and explosive power more effectively than the general Japanese style of stretching. Three static trunk stretches can improve flexibility, walking ability, endurance and explosive power. Trunk treatment stretching before physical activity might reduce the incidence of injury and improve the physical performance of individuals who participate in exercise, athletes and injured persons undergoing rehabilitation.ArticleBAOJ Medical and nursing.1(1):003(2015)journal articl

    Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs

    Get PDF
    SummaryObjectiveThe induction of synovial tissue to the meniscal lesion is crucial for meniscal healing. Synovial Mesenchymal stem cells (MSCs) are an attractive cell source because of their high proliferative and chondrogenic potentials. We examined whether transplantation of synovial MSCs promoted healing after meniscal repair of extended longitudinal tear of avascular area in a microminipig model.DesignLongitudinal tear lesion was made in medial menisci and sutured in both knees, and then a synovial MSC suspension was administered for 10 min only in unilateral knee. The sutured meniscus was evaluated morphologically and biomechanically at 2, 4, and 12 weeks. The behavior of transplanted MSCs was also examined.ResultsThe meniscal healing at 12 weeks was significantly better in the MSC group than in the control group; macroscopically, histologically and by T1rho mapping analysis. Transmission electron microscopic analysis demonstrated that the meniscus lesion was occupied by dense collagen fibrils only in the MSC group. Biomechanical analysis revealed that the tensile strength to failure of the meniscus higher in the MSC group than in the control group in each microminipig. Synovial tissue covered better along the superficial layer from the outer zone into the lesion of the meniscus in the MSC group at 2 and 4 weeks in each microminipig. Synovial MSCs labeled with ferucarbotran were detected in the meniscus lesion and adjacent synovium by MRI at 2 weeks.ConclusionTransplantation of synovial MSCs promoted healing after meniscal repair with induction of synovium into the longitudinal tear in the avascular zone of meniscus in pigs

    DC superconducting quantum interference devices fabricated using bicrystal grain boundary junctions in Co-doped BaFe2As2 epitaxial films

    Full text link
    DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30deg misorientation angles. The 18 x 8 micro-meter^2 SQUID loop with an estimated inductance of 13 pH contained two 3 micro-meter wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with deltaV = 1.4 micro-volt at 14 K, while the intrinsic flux noise of dc-SQUIDs was 7.8 x 10^-5 fai0/Hz^1/2 above 20 Hz. The rather high flux noise is mainly attributed to the small voltage modulation depth which results from the superconductor-normal metal-superconductor junction nature of the bicrystal grain boundary

    Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer

    Full text link
    X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacteria infections. Using Btk- and Tec-deficient mice (BtkTec-/-) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)-treated BtkTec-/- mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec-/- recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, revocery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA
    • …
    corecore