78 research outputs found

    Research Participants' Perspectives on Genotype-Driven Research Recruitment

    Get PDF
    Genotype-Driven Recruitment is a potentially powerful approach for studying human genetic variation but presents ethical challenges. We conducted in-depth interviews with research participants in six studies where such recruitment occurred. Nearly all responded favorably to the acceptability of recontact for research recruitment, and genotype-driven recruitment was viewed as a positive sign of scientific advancement. Reactions to questions about the disclosure of individual genetic research results varied. Common themes included explaining the purpose of recontact, informing decisions about further participation, reciprocity, “information is valuable,” and the possibility of benefit, as well as concerns about undue distress and misunderstanding. Our findings suggest contact about additional research may be least concerning if it involves a known element (e.g., trusted researchers). Also, for genotype-driven recruitment, it may be appropriate to set a lower bar for disclosure of individual results than the clinical utility threshold recommended more generally

    Mutations in KCTD1 Cause Scalp-Ear-Nipple Syndrome

    Get PDF
    Scalp-ear-nipple (SEN) syndrome is a rare, autosomal-dominant disorder characterized by cutis aplasia of the scalp; minor anomalies of the external ears, digits, and nails; and malformations of the breast. We used linkage analysis and exome sequencing of a multiplex family affected by SEN syndrome to identify potassium-channel tetramerization-domain-containing 1 (KCTD1) mutations that cause SEN syndrome. Evaluation of a total of ten families affected by SEN syndrome revealed KCTD1 missense mutations in each family tested. All of the mutations occurred in a KCTD1 region encoding a highly conserved bric-a-brac, tram track, and broad complex (BTB) domain that is required for transcriptional repressor activity. KCTD1 inhibits the transactivation of the transcription factor AP-2 alpha (TFAP2A) via its BTB domain, and mutations in TFAP2A cause cutis aplasia in individuals with branchiooculofacial syndrome (BOFS), suggesting a potential overlap in the pathogenesis of SEN syndrome and BOFS. the identification of KCTD1 mutations in SEN syndrome reveals a role for this BTB-domain-containing transcriptional repressor during ectodermal development.National Institutes of Health National Human Genome Research InstituteLife Sciences Discovery FundWashington Research FoundationMassachusetts Gen Hosp, Cutaneous Biol Res Ctr, Charlestown, MA 02129 USAUniv Washington, Dept Pediat, Seattle, WA 98195 USAUniv Washington, Dept Genome Sci, Seattle, WA 98195 USAUniv Western Sydney Macarthur, Sch Med, Campbelltown, NSW 2560, AustraliaGenet Learning Disabil Serv, Newcastle, NSW 2298, AustraliaJohns Hopkins Univ, Sch Med, McKusick Nathans Inst Genet Med, Baltimore, MD 21205 USAUniversidade Federal de São Paulo, Dept Morphol & Genet, Clin Genet Ctr, BR-04021001 São Paulo, BrazilPontificia Univ Catolica Parana, Dept Internal Med, BR-1155 Curitiba, Parana, BrazilWestern Gen Hosp, South East Scotland Clin Genet Serv, Edinburgh EH4 2XU, Midlothian, ScotlandUniv Florence, Dept Genet & Mol Med, I-50132 Florence, ItalyHop Necker Enfants Malad, Dept Genet, INSERM, U781, F-75015 Paris, FranceUniv Paris Descartes Sorbonne Paris Cite, Inst Imagine, F-75015 Paris, FranceHop Cote Nacre, CHU Caen, Serv Genet, F-14033 Caen 9, FranceUniv Connecticut, Ctr Hlth, Dept Reconstruct Sci, Farmington, CT 06030 USABoston Childrens Hosp, Dept Plast & Oral Surg, Boston, MA 02115 USATreuman Katz Ctr Pediat Bioeth, Seattle Childrens Res Inst, Seattle, WA 98101 USAUniversidade Federal de São Paulo, Dept Morphol & Genet, Clin Genet Ctr, BR-04021001 São Paulo, BrazilNational Institutes of Health National Human Genome Research Institute: 1U54HG006493National Institutes of Health National Human Genome Research Institute: 1RC2HG005608National Institutes of Health National Human Genome Research Institute: 5RO1HG004316Life Sciences Discovery Fund: 2065508Life Sciences Discovery Fund: 0905001Web of Scienc

    Actionable, Pathogenic Incidental Findings in 1,000 Participants’ Exomes

    Get PDF
    The incorporation of genomics into medicine is stimulating interest on the return of incidental findings (IFs) from exome and genome sequencing. However, no large-scale study has yet estimated the number of expected actionable findings per individual; therefore, we classified actionable pathogenic single-nucleotide variants in 500 European- and 500 African-descent participants randomly selected from the National Heart, Lung, and Blood Institute Exome Sequencing Project. The 1,000 individuals were screened for variants in 114 genes selected by an expert panel for their association with medically actionable genetic conditions possibly undiagnosed in adults. Among the 1,000 participants, 585 instances of 239 unique variants were identified as disease causing in the Human Gene Mutation Database (HGMD). The primary literature supporting the variants’ pathogenicity was reviewed. Of the identified IFs, only 16 unique autosomal-dominant variants in 17 individuals were assessed to be pathogenic or likely pathogenic, and one participant had two pathogenic variants for an autosomal-recessive disease. Furthermore, one pathogenic and four likely pathogenic variants not listed as disease causing in HGMD were identified. These data can provide an estimate of the frequency (∼3.4% for European descent and ∼1.2% for African descent) of the high-penetrance actionable pathogenic or likely pathogenic variants in adults. The 23 participants with pathogenic or likely pathogenic variants were disproportionately of European (17) versus African (6) descent. The process of classifying these variants underscores the need for a more comprehensive and diverse centralized resource to provide curated information on pathogenicity for clinical use to minimize health disparities in genomic medicine

    Correction: Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis

    Get PDF
    Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Latinx attitudes, barriers, and experiences with genetic counseling and testing: A systematic review.

    No full text
    As genetics is increasingly used across clinical settings, there is a need to understand the impact and experiences of diverse patients. This review systematically examined research literature on Latinx experiences with genetic counseling and genetic testing (GC/GT) in the United States, synthesizing key themes and knowledge gaps pertaining to both patient experience and hypothetical scenarios. Findings were based on a systematic search, inclusion, and thematic analysis of 81 empirical peer-reviewed articles published from January 1990 to July 2019 pertaining to Latinx populations and GC/GT. Studies most commonly addressed Latinas\u27 perspectives on GC/GT in prenatal settings or for hereditary breast and ovarian cancer (HBOC). Costs, referrals, and communication were significant barriers to accessing genetic services for many Latinx patients, particularly those with low English proficiency (LEP). Studies highlighted difficulties accessing and communicating in healthcare settings, and how medical context and prior experience with healthcare workers and institutions influenced GC/GT decision-making. Providers\u27 implicit biases about Latinx patients negatively impacted their care and impeded communication. Despite low awareness of cancer GT, Latinx patients often reported interest in learning more about GC/GT or unmet needs for GT discussion and provider involvement. This systematic review identified areas where providers can take action to improve Latinx experiences with GC/GT. Clinicians should elicit and respond to patient preferences about shared decision-making. For patients with low numeracy or LEP, providers should consider tailored educational and communication techniques. Most studies focused on HBOC and prenatal testing, and Latinx patients are heterogeneous, leaving many research questions about Latinx experience with GT/GC in other clinical areas

    Rare Disease, Advocacy and Justice: Intersecting Disparities in Research and Clinical Care

    No full text
    Rare genetic diseases collectively impact millions of individuals in the United States. These patients and their families share many challenges including delayed diagnosis, lack of knowledgeable providers, and limited economic incentives to develop new therapies for small patient groups. As such, rare disease patients and families often must rely on advocacy, including both self-advocacy to access clinical care and public advocacy to advance research. However, these demands raise serious concerns for equity, as both care and research for a given disease can depend on the education, financial resources, and social capital available to the patients in a given community. In this article, we utilize three case examples to illustrate ethical challenges at the intersection of rare diseases, advocacy and justice, including how reliance on advocacy in rare disease may drive unintended consequences for equity. We conclude with a discussion of opportunities for diverse stakeholders to begin to address these challenges
    corecore