7 research outputs found

    Protostellar jets: a statistical view with the CALYPSO IRAM-PdBI survey

    Get PDF
    Interstellar matter and star formatio

    Effect of MHD wind-driven disk evolution on the observed sizes of protoplanetary disks

    Get PDF
    Stars and planetary system

    The Nineteenth Century Engagement Between Geological and Adventist Thought and its Bearing on the Twentieth Century Flood Geology Movement

    Get PDF
    The Seventh-day Adventist Church has from the early years of its existence reacted to the perceived challenge of geological thought to their nascent theology. In particular, the Sabbath of the fourth Commandment in Genesis 2 and the catastrophic global Flood described in Genesis 7 and 8 were targeted. The nineteenth century Adventist response has been one of shifting focus, changing strategies, and increasing intensity. Ellen White, the church’s co-founder and prophetess, was one of the first to sound a warning on theological implications of geology. Her perception of geology contained many pre-nineteenth century concepts disconnected from contemporary geological thinking. Long-time editor Uriah Smith used external documents, notably Presbyterian writings to guide the Adventist congregation with ways of responding to geological thought as it impacted on their faith. The first authentic Adventist evaluation of geology and its perceived link with evolution by Alonzo Jones took place in the mid-1880s. With his spirited response, Jones criticised geological stratigraphic concepts in order to neutralise the threat of burgeoning theistic evolutionary thought. His searching in the geological literature involved the use of contextomy. George McCready Price next ventured to nullify the established stratigraphic principles of geology in order to justify a single, global flood-based hypothesis to explain all fossiliferous sedimentary formations. To achieve this, he presented from established scientists selected citations out of their intended context. A special case is presented on Price’s questionable use of the reports of American field geologists McConnell and Willis on thrust faults in the Rocky Mountains. Price modified diagrams and failed to convey unmistakable evidence of a dynamic cause of complex stratigraphy to present his case for the global existence of reverse sequences of rock strata. He argued that since the geologists’ evidence for a fossil sequence of life in the rock stratigraphy is so greatly flawed, there must have been a single catastrophic event that better explained this. Adventist engagement with geological thought during this period saw a noticeable increase in the disregard of intellectual integrity. This study argues that intellectual dishonesty is not a valid way to support a preconceived interpretation of the scriptural narrative. History provides several examples where skewed accounts of events due to questionable intellectual sincerity have eventually been corrected. This research provides access points for interested persons to further investigate the historical aspects of the nineteenth century geology and Adventist thought engagement

    Modeling accretion shocks at the disk–envelope interface: sulfur chemistry

    Get PDF
    Context. As material from an infalling protostellar envelope hits the forming disk, an accretion shock may develop which could (partially) alter the envelope material entering the disk. Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) indicate that emission originating from warm SO and SO2 might be good tracers of such accretion shocks.Aims. The goal of this work is to test under what shock conditions the abundances of gas-phase SO and SO2 increase in an accretion shock at the disk-envelope interface.Methods. Detailed shock models including gas dynamics were computed using the Paris-Durham shock code for nonmagnetized J-type accretion shocks in typical inner envelope conditions. The effect of the preshock density, shock velocity, and strength of the ultraviolet (UV) radiation field on the abundance of warm SO and SO2 is explored. Compared with outflows, these shocks involve higher densities (similar to 10(7) cm(-3)), lower shock velocities (similar to few km s(-1)), and large dust grains (similar to 0.2 mu m) and thus probe a different parameter space.Results. Warm gas-phase chemistry is efficient in forming SO under most J-type shock conditions considered. In lower-velocity (similar to 3 km s(-1)) shocks, the abundance of SO is increased through subsequent reactions starting from thermally desorbed CH4 toward H2CO and finally SO. In higher velocity (greater than or similar to 4 km s(-1)) shocks, both SO and SO2 are formed through reactions of OH and atomic S. The strength of the UV radiation field is crucial for SO and in particular SO2 formation through the photodissociation of H2O. Thermal desorption of SO and SO2 ice is only relevant in high-velocity (greater than or similar to 5 km s(-1)) shocks at high densities (greater than or similar to 10(7) cm(-3)). Both the composition in the gas phase, in particular the abundances of atomic S and O, and in ices such as H2S, CH4, SO, and SO2 play a key role in the abundances of SO and SO2 that are reached in the shock.Conclusions. Warm emission from SO and SO2 is a possible tracer of accretion shocks at the disk-envelope interface as long as a local UV field is present. Observations with ALMA at high-angular resolution could provide further constraints given that other key species for the gas-phase formation of SO and SO2, such as H2S and H2CO, are also covered. Moreover, the James Webb Space Telescope will give access to other possible slow, dense shock tracers such as H-2, H2O, and [SI} 25 mu m.NWOTOP-1 614.001.751Interstellar matter and star formatio

    Secular evolution of MHD wind-driven discs: analytical solutions in the expanded α-framework

    Get PDF
    Interstellar matter and star formatio
    corecore