11 research outputs found

    The Regulatory Role of T Cell Responses in Cardiac Remodeling Following Myocardial Infarction

    No full text
    Ischemic injury to the heart causes cardiomyocyte and supportive tissue death that result in adverse remodeling and formation of scar tissue at the site of injury. The dying cardiac tissue secretes a variety of cytokines and chemokines that trigger an inflammatory response and elicit the recruitment and activation of cardiac immune cells to the injury site. Cell-based therapies for cardiac repair have enhanced cardiac function in the injured myocardium, but the mechanisms remain debatable. In this review, we will focus on the interactions between the adoptively transferred stem cells and the post-ischemic environment, including the active components of the immune/inflammatory response that can mediate cardiac outcome after ischemic injury. In particular, we highlight how the adaptive immune cell response can mediate tissue repair following cardiac injury. Several cell-based studies have reported an increase in pro-reparative T cell subsets after stem cell transplantation. Paracrine factors secreted by stem cells polarize T cell subsets partially by exogenous ubiquitination, which can induce differentiation of T cell subset to promote tissue repair after myocardial infarction (MI). However, the mechanism behind the polarization of different subset after stem cell transplantation remains poorly understood. In this review, we will summarize the current status of immune cells within the heart post-MI with an emphasis on T cell mediated reparative response after ischemic injury

    Commensal Microbe-specific Activation of B2 Cell Subsets Contributes to Atherosclerosis Development Independently of Lipid Metabolism

    Get PDF
    The relation between B2 cells and commensal microbes during atherosclerosis remains largely unexplored. Here we show that under hyperlipidemic conditions intestinal microbiota resulted in recruitment and ectopic activation of B2 cells in perivascular adipose tissue, followed by an increase in circulating IgG, promoting disease development. In contrast, disruption of the intestinal microbiota by a broad-spectrum antibiotic cocktail (AVNM) led to the attenuation of atherosclerosis by suppressing B2 cells, despite the persistence of serum lipid abnormalities. Furthermore, pharmacological depletion of B2 cells with an anti-B2-cell surface CD23 antibody also attenuated commensal microbe-induced atherosclerosis. Moreover, expression analysis of TLR-signaling-related genes in the activated B2 cell subsets, assessed using the Toll-Like Receptor Signaling Pathway RT2 Profiler PCR Array, confirmed activation of the B2-cell autoantibody-production axis, which was associated with an increased capacity of B2 cells to bind to intestinal microbiota. Together, our findings reveal the critical role of commensal microbe-specific activation of B2 cells in the development of atherogenesis through lipid metabolism-independent mechanisms

    Regulators of Epithelial Sodium Channels in Aldosterone-Sensitive Distal Nephrons (ASDN): Critical Roles of Nedd4L/Nedd4-2 and Salt-Sensitive Hypertension

    No full text
    Ubiquitination is a representative, reversible biological process of the post-translational modification of various proteins with multiple catalytic reaction sequences, including ubiquitin itself, in addition to E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, E3 ubiquitin ligase, deubiquitinating enzymes, and proteasome degradation. The ubiquitin–proteasome system is known to play a pivotal role in various molecular life phenomena, including the cell cycle, protein quality, and cell surface expressions of ion-transporters. As such, the failure of this system can lead to cancer, neurodegenerative diseases, cardiovascular diseases, and hypertension. This review article discusses Nedd4-2/NEDD4L, an E3-ubiquitin ligase involved in salt-sensitive hypertension, drawing from detailed genetic dissection analysis and the development of genetically engineered mice model. Based on our analyses, targeting therapeutic regulations of ubiquitination in the fields of cardio-vascular medicine might be a promising strategy in future. Although the clinical applications of this strategy are limited, compared to those of kinase systems, many compounds with a high pharmacological activity were identified at the basic research level. Therefore, future development could be expected

    Optimal Anticoagulant Strategy for Periprocedural Management of Atrial Fibrillation Ablation: A Systematic Review and Network Meta-Analysis

    No full text
    This network meta-analysis was performed to rank the safety and efficacy of periprocedural anticoagulant strategies in patients undergoing atrial fibrillation ablation. MEDLINE, EMBASE, CENTRAL, and Web of Science were searched to identify randomized controlled trials comparing anticoagulant regimens in patients undergoing atrial fibrillation ablation up to July 1, 2021. The primary efficacy and safety outcomes were thromboembolic and major bleeding events, respectively, and the net clinical benefit was investigated as the primary-outcome composite. Seventeen studies were included (n = 6950). The mean age ranged from 59 to 70 years; 74% of patients were men and 55% had paroxysmal atrial fibrillation. Compared with the uninterrupted vitamin-K antagonist strategy, the odds ratios for the composite of primary safety and efficacy outcomes were 0.61 (95%CI: 0.31–1.17) with uninterrupted direct oral anticoagulants, 0.63 (95%CI: 0.26–1.54) with interrupted direct oral anticoagulants, and 8.02 (95%CI: 2.35–27.45) with interrupted vitamin-K antagonists. Uninterrupted dabigatran significantly reduced the risk of the composite of primary safety and efficacy outcomes (odds ratio, 0.21; 95%CI, 0.08–0.55). Uninterrupted direct oral anticoagulants are preferred alternatives to uninterrupted vitamin-K antagonists. Interrupted direct oral anticoagulants may be feasible as alternatives. Our results support the use of uninterrupted direct oral anticoagulants as the optimal periprocedural anticoagulant strategy for patients undergoing atrial fibrillation ablation

    Blood Pressure Elevation of Tubular Specific (P)RR Transgenic Mice and Lethal Tubular Degeneration due to Possible Intracellular Interactions between (P)RR and Alternative Renin Products

    No full text
    The prorenin/renin receptor ((P)RR) is a multifunctional protein that is widely distributed in various organs. Despite intensive research for more than 20 years, this receptor has not been fully characterized. In this study, we generated mice overexpressing the tubular epithelial (P)RR gene ((P)RR-TG mice) to test the previously reported functional role of (P)RR by Ramkumar et al. in 2015 using tubular specific (P)RR KO mice. (P)RR-TG mice were maintained and analyzed in individual metabolic cages and were administered angiotensin II blocker (ARB), direct renin inhibitor (DRI), and bafilomycin, that is, vacuolar ATPase (V-ATPase) antagonist. (P)RR-TG mice were hypertensive and had alkalized urine with lower osmolality and Na+ excretion. ARB and DRI, but not bafilomycin, concurrently decreased blood pressure. Bafilomycin acidized urine of (P)RR-TG mice, or equivalently this phenomenon restored the effect of overexpressed transgene, suggesting that (P)RR functioned as a V-ATPase in renal tubules. Afterall, (P)RR-TG mice were mated with alternative renin transgenic mice (ARen2-TG), which we identified as intracellular renin previously, to generate double transgenic mice (DT-TG). Lethal renal tubular damage was observed in DT-TG mice, suggesting that intracellular renin may be a ligand for (P)RR in tubules. In summary, (P)RR did not substantially affect the tissue renin-angiotensin system (RAS) in our model of tubular specific (P)RR gene over-expression, but alternative intracellular renin may be involved in (P)RR signaling in addition to conventional V-ATPase function. Further investigations are warranted

    Eplerenone-Resistant Salt-Sensitive Hypertension in Nedd4-2 C2 KO Mice

    No full text
    The epithelial sodium channel (ENaC) plays critical roles in maintaining fluid and electrolyte homeostasis and is located in the aldosterone-sensitive distal nephron (ASDN). We previously found that Nedd4-2 C2 knockout (KO) mice showed salt-sensitive hypertension with paradoxically enhanced ENaC gene expression in ASDN under high oral salt intake. Eplerenone (EPL), a selective aldosterone blocker, is a promising therapeutic option for resistant or/and salt-sensitive hypertension. We examined the effect of EPL on Nedd4-2 C2 KO mice with respect to blood pressure, metabolic parameters, and molecular level changes in ASDN under high oral salt intake. We found that EPL failed to reduce blood pressure in KO mice with high oral salt intake and upregulated ENaC expression in ASDN. Thus, salt-sensitive hypertension in Nedd4-2 C2 KO was EPL-resistant. Gene expression analyses of laser-captured specimens in ASDN suggested the presence of non-aldosterone-dependent activation of ENaC transcription in ASDN of Nedd4-2 C2 KO mice, which was abolished by amiloride treatment. Our results from Nedd4-2 C2 KO mice suggest that enhanced ENaC gene expression is critically involved in salt-sensitive hypertension under certain conditions of specific enzyme isoforms for their ubiquitination

    An Isoform of Nedd4-2 Plays a Pivotal Role in Electrophysiological Cardiac Abnormalities

    No full text
    We have previously shown that neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) isoforms with a C2 domain are closely related to ubiquitination of epithelial sodium channel (ENaC), resulting in salt-sensitive hypertension by Nedd4-2 C2 targeting in mice. The sodium voltage-gated channel alpha subunit 5 (SCN5A) gene encodes the α subunit of the human cardiac voltage-gated sodium channel (I Na), and the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene encodes rapidly activating delayed rectifier K channels (I Kr). Both ion channels have also been shown to bind to Nedd4-2 via a conserved Proline-Tyrosine (PY) motif in C-terminal with subsequent ubiquitination and degradation by proteasome. Therefore, loss of Nedd4-2 C2 isoform might be involved in electrophysiological impairment under various conditions. We demonstrate here that Nedd4-2 C2 isoform causes cardiac conduction change in resting condition as well as proarrhythmic change after acute myocardial infarction (MI). The Nedd4-2 C2 knockout (KO) mice showed bradycardia, prolonged QRS, QT intervals, and suppressed PR interval in resting condition. In addition, enhancement of T peak/T end interval was found in mice with surgical ligation of the distal left coronary artery. Morphological analyses based on both ultrasonography of the living heart, as well as histopathological findings revealed that Nedd4-2 C2 KO mice show no significant structural changes from wild-type littermates under resting conditions. These results suggested that Nedd4-2 with C2 domain might play an important role in cardio-renal syndrome through post-transcriptional modification of both ENaC and cardiac ion channels, which are critical for kidney and heart functions

    New non-invasive indexes of arterial stiffness are significantly correlated with severity and complexity of coronary atherosclerosis

    No full text
    Background: Endothelial dysfunction and increased arterial stiffness gradually develop before the manifestation of catastrophic cardiovascular events. Therefore, detection and assessment of vascular function are required to address pre-existing pathological conditions. However, the currently available diagnostic devices and methods are insufficient due to variability among investigators and the time-consuming nature of manual procedures. Methods: Recently, novel devices were developed for the detection of both arterial stiffness and endothelial dysfunction in a single blood pressure measurement using a cuff-oscillometric technique (AVE-1500, Shisei Datum, Japan). API (arterial pressure volume index) is defined as the reciprocal of the slope of the tangent of the brachial artery pressure-volume curve, and AVI (arterial velocity pulse index) is defined as the ratio of the difference between the ejection and reflection waves. In the present study, we performed retrospective, cross-sectional analyses of subjects (n = 102; mean age = 70.5 ± 10.4 years) with detailed coronary angiographic examinations and clinical background parameters. Results: After adjusting for various variables using multiple linear regression analyses, we found that API, but not AVI, was significantly correlated with coronary artery severity and complexity scores. Conclusions: We propose that API may be a new vascular index useful for monitoring and assessing the severity and complexity of atherosclerosis in subjects with coronary artery disease and for evaluating atherosclerotic diseases
    corecore