46 research outputs found

    Engineered swift equilibration of a Brownian particle

    Get PDF
    A fundamental and intrinsic property of any device or natural system is its relaxation time relax, which is the time it takes to return to equilibrium after the sudden change of a control parameter [1]. Reducing tautau relax , is frequently necessary, and is often obtained by a complex feedback process. To overcome the limitations of such an approach, alternative methods based on driving have been recently demonstrated [2, 3], for isolated quantum and classical systems [4--9]. Their extension to open systems in contact with a thermostat is a stumbling block for applications. Here, we design a protocol,named Engineered Swift Equilibration (ESE), that shortcuts time-consuming relaxations, and we apply it to a Brownian particle trapped in an optical potential whose properties can be controlled in time. We implement the process experimentally, showing that it allows the system to reach equilibrium times faster than the natural equilibration rate. We also estimate the increase of the dissipated energy needed to get such a time reduction. The method paves the way for applications in micro and nano devices, where the reduction of operation time represents as substantial a challenge as miniaturization [10]. The concepts of equilibrium and of transformations from an equilibrium state to another, are cornerstones of thermodynamics. A textbook illustration is provided by the expansion of a gas, starting at equilibrium and expanding to reach a new equilibrium in a larger vessel. This operation can be performed either very slowly by a piston, without dissipating energy into the environment, or alternatively quickly, letting the piston freely move to reach the new volume

    Disorders of compulsivity: a common bias towards learning habits.

    Get PDF
    Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion.This study was funded by the WT fellowship grant for VV (093705/Z/ 10/Z) and Cambridge NIHR Biomedical Research Centre. VV and NAH are Wellcome Trust (WT) intermediate Clinical Fellows. YW is supported by the Fyssen Fondation and MRC Studentships. PD is supported by the Gatsby Charitable Foundation. JEG has received grants from the National Institute of Drug Abuse and the National Center for Responsible Gaming. TWR and BJS are supported on a WT Programme Grant (089589/Z/09/Z). The BCNI is supported by a WT and MRC grant.This is the final published version. It's also available from Molecular Psychiatry at http://www.nature.com/mp/journal/vaop/ncurrent/full/mp201444a.html

    Past Arctic aliens have passed away, current ones may stay

    Get PDF
    Published version. Source at http://doi.org/10.1007/s10530-015-0937-9.Increased human activity and climate change are expected to increase the numbers and impact of alien species in the Arctic, but knowledge of alien species is poor in most Arctic regions. Through field investigations over the last 10 years, and review of alien vascular plant records for the high Arctic Archipelago Svalbard over the past 130 years, we explored long term trends in persistence and phenology. In total, 448 observations of 105 taxa have been recorded from 28 sites. Recent surveys at 18 of these sites revealed that alien species had disappeared at half of them. Investigations at a further 49 sites characterised by former human activity and/or current tourist landing sites did not reveal any alien species. Patterns of alien species distribution suggest that greater alien species richness is more likely to be aligned with ongoing human inhabitation than sites of transient use. The probability of an alien species being in a more advanced phenological stage increased with higher mean July temperatures. As higher mean July temperatures are positively correlated with more recent year, the latter finding suggests a clear warming effect on the increased reproductive potential of alien plants, and thus an increased potential for spread in Svalbard. Given that both human activity and temperatures are expected to increase in the future, there is need to respond in policy and action to reduce the potential for further alien species introduction and spread in the Arctic

    Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    Get PDF
    BACKGROUND: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-beta (Abeta) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. METHODOLOGY/PRINCIPAL FINDINGS: We found that while endogenous Abeta concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Abeta deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Abeta degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. CONCLUSIONS/SIGNIFICANCE: Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases

    The impacts of climate change on circumpolar biodiversity

    No full text
    Some of the most rapidly changing ecosystems on our planet are located in the polar regions (IPCC 2007; Turner et al. 2009; SWIPA 2011). In some areas of the Arctic and Antarctic, atmospheric temperatures are rising at rates more than double the global average. In addition, there are other direct human impacts on polar regions such as pollution, exploitation and development. Polar ecosystems and the biodiversity they support are already responding to this change and it is expected that even more profound impacts will occur this century. Compounding the risk to polar biodiversity is the fact that many polar ecosystems have limited functional redundancy; in the event of the loss of a single keystone species, they may potentially be exposed to cascading effects and complete ecosystem restructuring (Post et al. 2009). Rapid climate change affecting the polar regions will also have profound physical and ecological consequences for the rest of the planet since the ice-covered Arctic Ocean, the Antarctic continent, and the globally significant Antarctic Circumpolar Current (ACC) serve a key role in regulating the Earth’s climate and ocean systems. This special issue is intended to provide an overview of circumpolar change that crosses disciplines, systems, taxonomic groups and regions, and integrates papers that address a range of topics including: the monitoring of freshwater, marine, and terrestrial organisms in both the northern and southern polar regions, the role of protected areas in monitoring change in a warming world, polar resource management and development, impacts on northern indigenous peoples, case studies of the biodiversity of selected polar organisms, impacts of sea ice loss on terrestrial and marine organisms and ecosystems, interconnections with lower latitudes, and the influence of historical processes that have impacted polar diversity. This keynote paper is intended to provide background and insight into the issue by comparing and contrasting the Arctic and Antarctic regions in terms of their physical environment, human influences, indications of climate change and impacts on their biodiversity
    corecore