252 research outputs found

    In Vivo Comparison of Two Human Norovirus Surrogates for Testing Ethanol-Based Handrubs: The Mouse Chasing the Cat!

    Get PDF
    Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were −1.91 and −1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log10 while that of MNV by nearly 2.8 log10. Extending the contact time to 30 s reduced the FCV titer by almost 2 log10 by both test substances and that of MNV by >3.5 log10 by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log10 reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV

    Muscle invasive bladder cancer in Upper Egypt: the shift in risk factors and tumor characteristics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Egypt, where bilharziasis is endemic, bladder cancer is the commonest cancer in males and the 2<sup>nd </sup>in females; squamous cell carcinoma (SCC) is the commonest type found, with a peculiar mode of presentation. The aim of this study is to identify and rank the risk factors of muscle invasive bladder cancer (MIBC) in Upper Egypt and describe its specific criteria of presentation and histopathology.</p> <p>Methods</p> <p>This is an analytical, hospital based, case controlled study conducted in south Egypt cancer institute through comparing MIBC cases (n = 130) with age, sex and residence matched controls (n = 260) for the presence of risk factors of MIBC. Data was collected by personal interview using a well designed questionnaire. Patients' records were reviewed for histopathology and Radiologic findings.</p> <p>Results</p> <p>The risk factors of MIBC were positive family history [Adjusted odds ratio (AOR) = 7.7], exposure to pesticides [AOR = 6.2], bladder stones [AOR = 5], consanguinity [AOR = 3.9], recurrent cystitis [AOR = 3.1], bilharziasis [odds ratio (OR) = 5.8] and smoking [OR = 5.3]. SCC represented 67.6% of cases with burning micturition being the presenting symptom in 73.8%.</p> <p>Conclusion</p> <p>MIBC in Upper Egypt is usually of the SCC type (although its percentage is decreasing), occurs at a younger age and presents with burning micturition rather than hematuria. Unlike the common belief, positive family history, parents' consanguinity, exposure to pesticides and chronic cystitis seem to play now more important roles than bilharziasis and smoking in the development of this disease in this area.</p

    High-Resolution Genotyping of the Endemic Salmonella Typhi Population during a Vi (Typhoid) Vaccination Trial in Kolkata

    Get PDF
    Typhoid fever is caused by the bacterium Salmonella enterica serovar Typhi (S. Typhi) and is a major health problem especially in developing countries. Vaccines against typhoid are commonly used by travelers but less so by residents of endemic areas. We used single nucleotide polymorphism (SNP) typing to investigate the population structure of 372 S. Typhi bacteria isolated from typhoid patients during a typhoid disease burden study and Vi anti-typhoid vaccine trial in Kolkata, India. Approximately sixty thousand people were enrolled for fever surveillance for 19 months prior to, and 24 months following, vaccination of one third of the study population against typhoid (May 2003–December 2006, vaccinations given December 2004). We detected a diverse population of S. Typhi, including 21 different genetic forms (haplotypes) of the bacteria. The most common (69%) were of a haplogroup known as H58, which included all multidrug resistant isolates (bacteria resistant to the antibiotics chloramphenicol, ampicillin and co-trimoxazole). Resistance to quinolones, a class of antibiotics commonly used to treat typhoid fever, was particularly high among a subgroup of H58 (H58-G). Vi vaccination did not obviously impact on the haplotype distribution of the S. Typhi circulating during the study period

    Prediction of multiple overshoots in shear stress during fast flows of bidisperse polymer melts

    Full text link
    We present a differential constitutive model of stress relaxation in polydisperse linear polymer melts and solutions that contains contributions from reptation, contour-length fluctuations, and chain stretching. The predictions of the model during fast start-up and steady shear flows of polymer melts are in accord with experimental observations. Moreover, in accordance with reported experimental literature (Osaki et al. in J Polym Sci B Polym Phys 38:2043–2050, 2000), the model predicts, for a range of shear rates, two overshoots in shear stress during start-up of steady shear flows of bidisperse polymer melts having components with widely separated molar masses. Two overshoots result only when the stretch or Rouse relaxation time of the higher molar mass component is longer than the terminal relaxation time of the lower molar mass component. The “first overshoot” is the first to appear with increasing shear rate and occurs as a result of the stretching of longer chains. Transient stretching of the short chains is responsible for the early time second overshoot. The model predictions in steady and transitional extensional flows are also remarkable for both monodisperse and bidisperse polymer solutions. The computationally efficient differential model can be used to predict rheology of commercial polydisperse polymer melts and solutions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45865/1/397_2005_Article_60.pd

    A Modeling-Derived Hypothesis on Chronicity in Respiratory Diseases: Desensitized Pathogen Recognition Secondary to Hyperactive IRAK/TRAF6 Signaling

    Get PDF
    Several chronic respiratory diseases exhibit hyperactive immune responses in the lung: abundant inflammatory mediators; infiltrating neutrophils, macrophages, lymphocytes and other immune cells; and increased level of proteases. Such diseases include cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and severe/neutrophilic asthma. Paradoxically, patients with these diseases are also susceptible to detrimental bacterial infection and colonization. In this paper, we seek to explain how a positive feedback mechanism via IL-8 could lead to desensitization of epithelial cells to pathogen recognition thus perpetuating bacterial colonization and chronic disease states in the lung. Such insight was obtained from mathematical modeling of the IRAK/TRAF6 signaling module, and is consistent with existing clinical evidence. The potential implications for targeted treatment regimes for these persistent respiratory diseases are explored

    Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering.</p> <p>Results</p> <p>In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between <it>Saccharomyces cerevisiae </it>strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the <it>Saccharomyces </it>Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (<it>GAL1</it>, <it>GAL10</it>) and ergosterol biosynthetic pathway (<it>ERG8</it>, <it>ERG9</it>). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function.</p> <p>Conclusions</p> <p>With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at <url>http://www.sysbio.se/cenpk</url>.</p
    corecore