367 research outputs found

    Autonomy support, basic need satisfaction and the optimal functioning of adult male and female sport participants: A test of basic needs theory

    Get PDF
    Grounded in Basic Needs Theory (BNT; Ryan and Deci, American Psychologist, 55, 68–78, 2000a), the present study aimed to: (a) test a theoretically-based model of coach autonomy support, motivational processes and well-/ill being among a sample of adult sport participants, (b) discern which basic psychological need(s) mediate the link between autonomy support and well-/ill-being, and (c) explore gender invariance in the hypothesized model. Five hundred and thirty nine participants (Male = 271;Female = 268; Mage = 22.75) completed a multi-section questionnaire tapping the targeted variables. Structural Equation Modeling (SEM) analysis revealed that coach autonomy support predicted participants’ basic need satisfaction for autonomy, competence and relatedness. In turn, basic need satisfaction predicted greater subjective vitality when engaged in sport. Participants with low levels of autonomy were more susceptible to feeling emotionally and physically exhausted from their sport investment. Autonomy and competence partially mediated the path from autonomy support to subjective vitality. Lastly, the results supported partial invariance of the model with respect to gender

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    Gestural communication of the gorilla (Gorilla gorilla): repertoire, intentionality and possible origins

    Get PDF
    Social groups of gorillas were observed in three captive facilities and one African field site. Cases of potential gesture use, totalling 9,540, were filtered by strict criteria for intentionality, giving a corpus of 5,250 instances of intentional gesture use. This indicated a repertoire of 102 gesture types. Most repertoire differences between individuals and sites were explicable as a consequence of environmental affordances and sampling effects: overall gesture frequency was a good predictor of universality of occurrence. Only one gesture was idiosyncratic to a single individual, and was given only to humans. Indications of cultural learning were few, though not absent. Six gestures appeared to be traditions within single social groups, but overall concordance in repertoires was almost as high between as within social groups. No support was found for the ontogenetic ritualization hypothesis as the chief means of acquisition of gestures. Many gestures whose form ruled out such an origin, i.e. gestures derived from species-typical displays, were used as intentionally and almost as flexibly as gestures whose form was consistent with learning by ritualization. When using both classes of gesture, gorillas paid specific attention to the attentional state of their audience. Thus, it would be unwarranted to divide ape gestural repertoires into ‘innate, species-typical, inflexible reactions’ and ‘individually learned, intentional, flexible communication’. We conclude that gorilla gestural communication is based on a species-typical repertoire, like those of most other mammalian species but very much larger. Gorilla gestures are not, however, inflexible signals but are employed for intentional communication to specific individuals

    Pretense and Imagination

    Get PDF
    Issues of pretense and imagination are of central interest to philosophers, psychologists, and researchers in allied fields. In this entry, we provide a roadmap of some of the central themes around which discussion has been focused. We begin with an overview of pretense, imagination, and the relationship between them. We then shift our attention to the four specific topics where the disciplines' research programs have intersected or where additional interactions could prove mutually beneficial: the psychological underpinnings of performing pretense and of recognizing pretense, the cognitive capacities involved in imaginative engagement with fictions, and the real-world impact of make-believe. In the final section, we discuss more briefly a number of other mental activities that arguably involve imagining, including counterfactual reasoning, delusions, and dreaming

    Will Patients Benefit from Regionalization of Gynecologic Cancer Care?

    Get PDF
    OBJECTIVE: Patient chances for cure and palliation for a variety of malignancies may be greatly affected by the care provided by a treating hospital. We sought to determine the effect of volume and teaching status on patient outcomes for five gynecologic malignancies: endometrial, cervical, ovarian and vulvar carcinoma and uterine sarcoma. METHODS: The Florida Cancer Data System dataset was queried for all patients undergoing treatment for gynecologic cancers from 1990-2000. RESULTS: Overall, 48,981 patients with gynecologic malignancies were identified. Endometrial tumors were the most common, representing 43.2% of the entire cohort, followed by ovarian cancer (30.9%), cervical cancer (20.8%), vulvar cancer (4.6%), and uterine sarcoma (0.5%). By univariate analysis, although patients treated at high volume centers (HVC) were significantly younger, they benefited from an improved short-term (30-day and/or 90-day) survival for cervical, ovarian and endometrial cancers. Multivariate analysis (MVA), however, failed to demonstrate significant survival benefit for gynecologic cancer patients treated at teaching facilities (TF) or HVC. Significant prognostic factors at presentation by MVA were age over 65 (HR = 2.6, p<0.01), African-American race (HR = 1.36, p<0.01), and advanced stage (regional HR = 2.08, p<0.01; advanced HR = 3.82, p<0.01, respectively). Surgery and use of chemotherapy were each significantly associated with improved survival. CONCLUSION: No difference in patient survival was observed for any gynecologic malignancy based upon treating hospital teaching or volume status. Although instances of improved outcomes may occur, overall further regionalization would not appear to significantly improve patient survival

    The longitudinal relationship between job mobility, perceived organizational justice, and health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main purpose of the present study was to examine the 2-year longitudinal and reciprocal relationship between job mobility and health and burnout. A second aim was to elucidate the effects of perceived organizational justice and turnover intentions on the relationship between job mobility (non-, internally and externally mobile), and health (SF-36) and burnout (CBI).</p> <p>Methods</p> <p>The study used questionnaire data from 662 Swedish civil servants and the data were analysed with Structural Equation Modeling statistical methods.</p> <p>Results</p> <p>The results showed that job mobility was a better predictor of health and burnout, than health and burnout were as predictors of job mobility. The predictive effects were most obvious for psychosocial health and burnout, but negligible as far as physical health was concerned. Organizational justice was found to have a direct impact on health, but not on job mobility; whereas turnover intentions had a direct effect on job mobility.</p> <p>Conclusion</p> <p>The predictive relationship between job mobility and health has practical implications for health promotive actions in different organizations.</p

    A Screen for Spore Wall Permeability Mutants Identifies a Secreted Protease Required for Proper Spore Wall Assembly

    Get PDF
    The ascospores of Saccharomyces cerevisiae are surrounded by a complex wall that protects the spores from environmental stresses. The outermost layer of the spore wall is composed of a polymer that contains the cross-linked amino acid dityrosine. This dityrosine layer is important for stress resistance of the spore. This work reports that the dityrosine layer acts as a barrier blocking the diffusion of soluble proteins out of the spore wall into the cytoplasm of the ascus. Diffusion of a fluorescent protein out of the spore wall was used as an assay to screen for mutants affecting spore wall permeability. One of the genes identified in this screen, OSW3 (RRT12/YCR045c), encodes a subtilisin-family protease localized to the spore wall. Mutation of the active site serine of Osw3 results in spores with permeable walls, indicating that the catalytic activity of Osw3 is necessary for proper construction of the dityrosine layer. These results indicate that dityrosine promotes stress resistance by acting as a protective shell around the spore. OSW3 and other OSW genes identified in this screen are strong candidates to encode enzymes involved in assembly of this protective dityrosine coat

    Computational methodology to determine fluid related parameters on non regular three-dimensional scaffolds

    Full text link
    The application of three-dimensional (3D) biomaterials to facilitate the adhesion, proliferation, and differentiation of cells has been widely studied for tissue engineering purposes. The fabrication methods used to improve the mechanical response of the scaffold produce complex and non regular structures. Apart from the mechanical aspect, the fluid behavior in the inner part of the scaffold should also be considered. Parameters such as permeability (k) or wall shear stress (WSS) are important aspects in the provision of nutrients, the removal of metabolic waste products or the mechanically-induced differentiation of cells attached in the trabecular network of the scaffolds. Experimental measurements of these parameters are not available in all labs. However, fluid parameters should be known prior to other types of experiments. The present work compares an experimental study with a computational fluid dynamics (CFD) methodology to determine the related fluid parameters (k and WSS) of complex non regular poly(L-lactic acid) scaffolds based only on the treatment of microphotographic images obtained with a microCT (lCT). The CFD analysis shows similar tendencies and results with low relative difference compared to those of the experimental study, for high flow rates. For low flow rates the accuracy of this prediction reduces. The correlation between the computational and experimental results validates the robustness of the proposed methodology.The authors gratefully acknowledge research support from the Spanish Ministry of Science and Innovation through research project DPI2010-20399-C04-01. The Instituto de Salud Carlos III (ISCIII) through the CIBER initiative and the Platform for Biological Tissue Characterization of the Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) are also gratefully acknowledged.Acosta Santamaría, VA.; Malvé, M.; Duizabo, A.; Mena Tobar, A.; Gallego Ferrer, G.; García Aznar, J.; Doblare Castellano, M.... (2013). Computational methodology to determine fluid related parameters on non regular three-dimensional scaffolds. Annals of Biomedical Engineering. 41(11):2367-2380. https://doi.org/10.1007/s10439-013-0849-8S236723804111Acosta Santamaría, V., H. Deplaine, D. Mariggió, A. R. Villanueva-Molines, J. M. García-Aznar, J. L. Gómez Ribelles, M. Doblaré, G. Gallego Ferrer, and I. Ochoa. Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. J. Non-Cryst. Solids 358(23):3141–3149, 2012.Adachi, T., Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972, 2006.Adamczyk, Z., and T. G. M. Vandeven. Deposition of particles under external forces in laminar-flow through parallel-plate and cylindrical channels. J. Colloid Interface Sci. 80(2):340–356, 1981.Alberich, B. A., D. Moratal, J. L. Escobar, J. C. Rodríguez, A. Vallés-Lluch, L. Martí-Bonmatí, et al. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 91B(1):191–202, 2009.Al-Munajjed, A., M. Hien, R. Kujat, J. P. Gleeson, and J. Hammer. Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. J. Mater. Sci. Mater. Med. 19(8):2859–2864, 2008.Alves da Silva, M. L., A. Martins, A. R. Costa-Pinto, V. M. Correlo, P. Sol, M. Bhattacharya, S. Faria, R. L. Reis, and N. M. Neves. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen. Med. 5(9):722–732, 2011.Ansys (2010) CFX Theory User Manual. Canonsburg, PA: Ansys Software.Brígido, R. D., J. M. Estellés, J. A. Sanz, J. M. García-Aznar, and M. S. Sánchez. Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling. J. Biomed. Mater. Res. B Appl. Biomater. 81B(2):448–455, 2007.Byrne, P. D., D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554, 2007.Chor, M. V., and W. Li. A permeability measurement system for tissue engineering scaffolds. Meas. Sci. Technol. 18(1):208–216, 2007.Cozensroberts, C., J. A. Quinn, and D. A. Lauffenburger. Receptor-mediated adhesion phenomena—model studies with the radial-flow detachment assay. Biophys. J. 58(1):107–125, 1990.Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8(5):807–816, 2002.Deplaine, H., M. Lebourg, P. Ripalda, A. Vidaurre, P. Sanz-Ramos, G. Mora, F. Prósper, I. Ochoa, M. Doblaré, J. L. Gómez Ribelles, I. Izal-Azcárate, and G. Gallego Ferrer. Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(l-lactic acid) scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 101(1):173–186, 2013.Dias, M. R., P. R. Fernandes, J. M. Guedes, and S. J. Hollister. Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45(6):938–944, 2012.Freyman, T. M., I. V. Yannas, and L. J. Gibson. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater Sci. 46:273–282, 2001.Gong, S., H. Wang, Q. Sun, S. T. Xue, and J. Wang. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials 27(20):3793–3799, 2006.Gutierrez, R. A., and E. T. Crumpler. Potential effect of geometry on wall shear stress distribution across scaffold surfaces. Ann. Biomed. Eng. 36(1):77–85, 2008.Hammer, D. A., and D. Lauffenburger. A dynamic-model for receptor-mediated cell adhesion to surfaces. Biophys. J. 52(3):475–487, 1987.Ho, S. T., and D. W. Hutmacher. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376, 2006.Ho, M. H., P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou, J. Y. Lai, and D. M. Wang. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1):129–138, 2004.Hutmacher, D. W., J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1(4):245–260, 2007.Izal, I., P. Aranda, P. Sanz-Ramos, P. Ripalda, G. Mora, F. Granero-Moltó, H. Deplaine, J. L. Gómez-Ribelles, G. G. Ferrer, V. Acosta, I. Ochoa, J. M. García-Aznar, E. J. Andreu, M. Monleón-Pradas, M. Doblaré, and F. Prósper. Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surg. Sports Traumatol. Arthrosc., 2012.Kapur, S., D. J. Baylink, and K. H. Lau. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32(3):241–251, 2003.Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32(12):1728–1743, 2004.Kelly, D. J., and P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7):1413–1422, 2005.Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A 14(4):529–537, 2008.Lacroix, D., A. Chateau, M. P. Ginebra, and J. A. Planell. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27(30):5326–5334, 2006.Lacroix, D., and P. J. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9):1163–1171, 2002.Li, S., J. R. De Wijn, J. Li, P. Layrolle, and K. De Groot. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9:535–548, 2003.Melchels, F. P. W., B. Tonnarelli, A. L. Olivares, I. Martin, D. Lacroix, J. Feijen, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32(11):2878–2884, 2011.O’Brien, F. J., B. A. Harley, M. A. Waller, I. Yannas, L. J. Gibson, and P. Prendergast. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 15(1):3–17, 2007.Ochoa, I., J. A. Sanz, J. M. Garcia-Aznar, M. Doblare, D. M. Yunos, and A. R. Boccaccini. Permeability evaluation of 45S5 bioglass-based scaffolds for bone tissue engineering. J. Biomech. 42:257–260, 2009.Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. Mater. Res. 38:543–549, 2005.Sandino, C., S. Checa, P. J. Prendergast, and D. Lacroix. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8):2446–2452, 2010.Sanz, J. A., J. M. García-Aznar, and M. Doblaré. On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 5(1):219–229, 2009.Sanz, J. A., C. Kasper, M. van Griensven, J. M. Garcia-Aznar, I. Ochoa, and M. Doblare. Mechanical and flow characterization of Sponceram® carriers: evaluation by homogenization theory and experimental validation. J. Biomed. Mater. Res. B Appl. Biomater. 87B(1):42–48, 2008.Singh, H., S. H. Teoh, H. T. Low, and D. W. Hutmacher. Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J. Biotechnol. 119:181–196, 2005.Sjollema, J., and H. J. Busscher. Deposition of polystyrene latex-particles toward polymethylmethacrylate in a parallel plate flow cell. J. Colloid Interface Sci. 132(2):382–394, 1989.Truscello, S., G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8(4):1648–1658, 2012.Woodfield, T. B., J. Malda, J. Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161, 2004
    corecore