465 research outputs found
Recommended from our members
Simultaneous real-time measurement of isoprene and 2-methyl-3-buten-2-ol emissions from trees using SIFT-MS
The C5 hemiterpenes isoprene and 2-methyl-3-buten-2-ol (MBO) are important biogenic volatiles emitted from terrestrial vegetation. Isoprene is emitted from many plant groups, especially trees such as Populus, while emission of MBO is restricted to certain North American conifers, including species of Pinus. MBO is also a pheromone emitted by several conifer bark beetles. Both isoprene and MBO have typically been measured by proton-transfer reaction mass spectrometry (PTR-MS), but this method cannot accurately distinguish between them because of their signal overlap. Our study developed a method for using selective ion flow tube mass spectrometry (SIFT-MS) that allows simultaneous on-line measurement of isoprene and MBO by employing different reagent ions. The use of m/z(NO+) = 68 u for isoprene and m/z(O2 +) = 71 u for MBO gave minimal interference between the compounds. We tested the suitability of the method by measuring the emission of young trees of Populus, Picea, and Pinus. Our results largely confirm previous findings that Populus nigra, Picea glauca, and Picea abies emit isoprene and Pinus ponderosa emits MBO, but we also found MBO to be emitted by Picea abies. Thus SIFT-MS provides a reliable, easy to use, on-line measuring tool to distinguish between isoprene and MBO. The method should be of use to atmospheric chemists, tree physiologists and forest entomologists, among others
Anomalous AMS radiocarbon ages for foraminifera from high-deposition-rate ocean sediments
Radiocarbon ages on handpicked foraminifera from deep-sea cores are revealing that areas of rapid sediment accumulation are in some cases subject to hiatuses, reworking and perhaps secondary calcite deposition. We present here an extreme example of the impacts of such disturbances. The message is that if precise chronologies or meaningful benthic planktic age differences are to be obtained, then it is essential to document the reliability of radiocarbon ages by making both comparisons between coexisting species of planktomc foraminifera and detailed down-core sequences of measurements
Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil
Representing the response of soil carbon dynamics to global environmental change requires the incorporation of multiple tools in the development of predictive models. An important tool to construct and test models is the incorporation of bomb radiocarbon in soil organic matter during the past decades. In this manuscript, we combined radiocarbon data and a previously developed empirical model to explore decade-scale soil carbon dynamics in a temperate forest ecosystem at the Harvard Forest, Massachusetts, USA. We evaluated the contribution of different soil C fractions to both total soil CO<sub>2</sub> efflux and microbially respired C. We tested the performance of the model based on measurable soil organic matter fractions against a decade of radiocarbon measurements. The model was then challenged with radiocarbon measurements from a warming and N addition experiment to test multiple hypotheses about the different response of soil C fractions to the experimental manipulations. Our results showed that the empirical model satisfactorily predicts the trends of radiocarbon in litter, density fractions, and respired CO<sub>2</sub> observed over a decade in the soils not subjected to manipulation. However, the model, modified with prescribed relationships for temperature and decomposition rates, predicted most but not all the observations from the field experiment where soil temperatures and nitrogen levels were increased, suggesting that a larger degree of complexity and mechanistic relations need to be added to the model to predict short-term responses and transient dynamics
Bayesian calibration of a soil organic carbon model using Δ<sup>14</sup>C measurements of soil organic carbon and heterotrophic respiration as joint constraints
Soils of temperate forests store significant amounts of organic matter and
are considered to be net sinks of atmospheric CO<sub>2</sub>. Soil organic carbon
(SOC) turnover has been studied using the Δ<sup>14</sup>C values of bulk SOC
or different SOC fractions as observational constraints in SOC models.
Further, the Δ<sup>14</sup>C values of CO<sub>2</sub> that evolved during the
incubation of soil and roots have been widely used together with
Δ<sup>14</sup>C of total soil respiration to partition soil respiration into
heterotrophic respiration (HR) and rhizosphere respiration. However, these
data have not been used as joint observational constraints to determine SOC
turnover times. Thus, we focus on (1) how different combinations of
observational constraints help to narrow estimates of turnover times and
other parameters of a simple two-pool model, the Introductory Carbon Balance
Model (ICBM); (2) whether relaxing the steady-state assumption in a multiple
constraints approach allows the source/sink strength of the soil to be
determined while estimating turnover times at the same time. To this end ICBM
was adapted to model SOC and SO<sup>14</sup>C in parallel with
litterfall and the Δ<sup>14</sup>C of litterfall as driving variables. The
Δ<sup>14</sup>C of the atmosphere with its prominent bomb peak was used as a
proxy for the Δ<sup>14</sup>C of litterfall. Data from three spruce-dominated
temperate forests in Germany and the USA (Coulissenhieb II, Solling D0 and
Howland Tower site) were used to estimate the parameters of ICBM via Bayesian
calibration. Key findings are as follows: (1) the joint use of all four
observational constraints (SOC stock and its Δ<sup>14</sup>C, HR flux and its
Δ<sup>14</sup>C) helped to considerably narrow turnover times of the young
pool (primarily by Δ<sup>14</sup>C of HR) and the old pool (primarily by
Δ<sup>14</sup>C of SOC). Furthermore, the joint use of all observational
constraints made it possible to constrain the humification factor in ICBM,
which describes the fraction of the annual outflux from the young pool that
enters the old pool. The Bayesian parameter estimation yielded the following
turnover times (mean ± standard deviation) for SOC in the young pool:
Coulissenhieb II 1.1 ± 0.5 years, Solling D0 5.7 ± 0.8 years and
Howland Tower 0.8 ± 0.4 years. Turnover times for the old pool were
377 ± 61 years (Coulissenhieb II), 313 ± 66 years (Solling D0)
and 184 ± 42 years (Howland Tower), respectively. (2) At all three
sites the multiple constraints approach was not able to determine if the soil
has been losing or storing carbon. Nevertheless, the relaxed steady-state
assumption hardly introduced any additional uncertainty for the other
parameter estimates. Overall the results suggest that using Δ<sup>14</sup>C
data from more than one carbon pool or flux helps to better constrain SOC
models
Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa
Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.e., up to 38 times lower soil N or C contents than temperate grasslands. Illumina MiSeq amplicon sequencing revealed a unique soil bacterial community dominated by Actinobacteria (20–66%), Chloroflexi (9–29%), and Firmicutes (7–42%) and an increase in the relative abundance of Actinobacteria with increasing soil nutrient content. The archaeal community reached up to 14% of the total soil microbial community and was dominated by the thaumarchaeal Soil Crenarchaeotic Group (43–99.8%), with a high fraction of sequences related to the ammonia-oxidizing genus Nitrosopshaera sp. Quantitative PCR targeting amoA genes encoding the alpha subunit of ammonia monooxygenase also revealed a high genetic potential for ammonia oxidation dominated by archaea (~5 × 107 archaeal amoA gene copies g−1 soil vs. mostly < 7 × 104 bacterial amoA gene copies g−1 soil). Abundances of archaeal 16S rRNA and amoA genes were positively correlated with soil nitrate, N and C contents. Nitrospira sp. was detected as the most abundant group of nitrite oxidizing bacteria. The specific geochemical conditions and particle transport dynamics at the granitic catena were found to affect soil microbial communities through clay and nutrient relocation along the hill slope, causing a shift to different, less diverse bacterial and archaeal communities at the footslope. Overall, our results suggest a strong effect of the savanna soils' nutrient scarcity on all microbial communities, resulting in a distinct community structure that differs markedly from nutrient-rich, temperate grasslands, along with a high relevance of archaeal ammonia oxidation in savanna soils
Reviewing the Carbonation Resistance of Concrete
The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2) penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs)/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefl
Controls on timescales of soil organic carbon persistence across sub-Saharan Africa
Given the importance of soil for the global carbon cycle, it is essential to understand not only how much carbon soil stores but also how long this carbon persists. Previous studies have shown that the amount and age of soil carbon are strongly affected by the interaction of climate, vegetation, and mineralogy. However, these findings are primarily based on studies from temperate regions and from fine-scale studies, leaving large knowledge gaps for soils from understudied regions such as sub-Saharan Africa. In addition, there is a lack of data to validate modeled soil C dynamics at broad scales. Here, we present insights into organic carbon cycling, based on a new broad-scale radiocarbon and mineral dataset for sub-Saharan Africa. We found that in moderately weathered soils in seasonal climate zones with poorly crystalline and reactive clay minerals, organic carbon persists longer on average (topsoil: 201 ± 130 years; subsoil: 645 ± 385 years) than in highly weathered soils in humid regions (topsoil: 140 ± 46 years; subsoil: 454 ± 247 years) with less reactive minerals. Soils in arid climate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years) store organic carbon for periods more similar to those in seasonal climate zones, likely reflecting climatic constraints on weathering, carbon inputs and microbial decomposition. These insights into the timescales of organic carbon persistence in soils of sub-Saharan Africa suggest that a process-oriented grouping of soils based on pedo-climatic conditions may be useful to improve predictions of soil responses to climate change at broader scales
- …