465 research outputs found

    Anomalous AMS radiocarbon ages for foraminifera from high-deposition-rate ocean sediments

    Get PDF
    Radiocarbon ages on handpicked foraminifera from deep-sea cores are revealing that areas of rapid sediment accumulation are in some cases subject to hiatuses, reworking and perhaps secondary calcite deposition. We present here an extreme example of the impacts of such disturbances. The message is that if precise chronologies or meaningful benthic planktic age differences are to be obtained, then it is essential to document the reliability of radiocarbon ages by making both comparisons between coexisting species of planktomc foraminifera and detailed down-core sequences of measurements

    Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil

    Get PDF
    Representing the response of soil carbon dynamics to global environmental change requires the incorporation of multiple tools in the development of predictive models. An important tool to construct and test models is the incorporation of bomb radiocarbon in soil organic matter during the past decades. In this manuscript, we combined radiocarbon data and a previously developed empirical model to explore decade-scale soil carbon dynamics in a temperate forest ecosystem at the Harvard Forest, Massachusetts, USA. We evaluated the contribution of different soil C fractions to both total soil CO<sub>2</sub> efflux and microbially respired C. We tested the performance of the model based on measurable soil organic matter fractions against a decade of radiocarbon measurements. The model was then challenged with radiocarbon measurements from a warming and N addition experiment to test multiple hypotheses about the different response of soil C fractions to the experimental manipulations. Our results showed that the empirical model satisfactorily predicts the trends of radiocarbon in litter, density fractions, and respired CO<sub>2</sub> observed over a decade in the soils not subjected to manipulation. However, the model, modified with prescribed relationships for temperature and decomposition rates, predicted most but not all the observations from the field experiment where soil temperatures and nitrogen levels were increased, suggesting that a larger degree of complexity and mechanistic relations need to be added to the model to predict short-term responses and transient dynamics

    Bayesian calibration of a soil organic carbon model using Δ<sup>14</sup>C measurements of soil organic carbon and heterotrophic respiration as joint constraints

    Get PDF
    Soils of temperate forests store significant amounts of organic matter and are considered to be net sinks of atmospheric CO<sub>2</sub>. Soil organic carbon (SOC) turnover has been studied using the Δ<sup>14</sup>C values of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ<sup>14</sup>C values of CO<sub>2</sub> that evolved during the incubation of soil and roots have been widely used together with Δ<sup>14</sup>C of total soil respiration to partition soil respiration into heterotrophic respiration (HR) and rhizosphere respiration. However, these data have not been used as joint observational constraints to determine SOC turnover times. Thus, we focus on (1) how different combinations of observational constraints help to narrow estimates of turnover times and other parameters of a simple two-pool model, the Introductory Carbon Balance Model (ICBM); (2) whether relaxing the steady-state assumption in a multiple constraints approach allows the source/sink strength of the soil to be determined while estimating turnover times at the same time. To this end ICBM was adapted to model SOC and SO<sup>14</sup>C in parallel with litterfall and the Δ<sup>14</sup>C of litterfall as driving variables. The Δ<sup>14</sup>C of the atmosphere with its prominent bomb peak was used as a proxy for the Δ<sup>14</sup>C of litterfall. Data from three spruce-dominated temperate forests in Germany and the USA (Coulissenhieb II, Solling D0 and Howland Tower site) were used to estimate the parameters of ICBM via Bayesian calibration. Key findings are as follows: (1) the joint use of all four observational constraints (SOC stock and its Δ<sup>14</sup>C, HR flux and its Δ<sup>14</sup>C) helped to considerably narrow turnover times of the young pool (primarily by Δ<sup>14</sup>C of HR) and the old pool (primarily by Δ<sup>14</sup>C of SOC). Furthermore, the joint use of all observational constraints made it possible to constrain the humification factor in ICBM, which describes the fraction of the annual outflux from the young pool that enters the old pool. The Bayesian parameter estimation yielded the following turnover times (mean ± standard deviation) for SOC in the young pool: Coulissenhieb II 1.1 ± 0.5 years, Solling D0 5.7 ± 0.8 years and Howland Tower 0.8 ± 0.4 years. Turnover times for the old pool were 377 ± 61 years (Coulissenhieb II), 313 ± 66 years (Solling D0) and 184 ± 42 years (Howland Tower), respectively. (2) At all three sites the multiple constraints approach was not able to determine if the soil has been losing or storing carbon. Nevertheless, the relaxed steady-state assumption hardly introduced any additional uncertainty for the other parameter estimates. Overall the results suggest that using Δ<sup>14</sup>C data from more than one carbon pool or flux helps to better constrain SOC models

    Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa

    Get PDF
    Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.e., up to 38 times lower soil N or C contents than temperate grasslands. Illumina MiSeq amplicon sequencing revealed a unique soil bacterial community dominated by Actinobacteria (20–66%), Chloroflexi (9–29%), and Firmicutes (7–42%) and an increase in the relative abundance of Actinobacteria with increasing soil nutrient content. The archaeal community reached up to 14% of the total soil microbial community and was dominated by the thaumarchaeal Soil Crenarchaeotic Group (43–99.8%), with a high fraction of sequences related to the ammonia-oxidizing genus Nitrosopshaera sp. Quantitative PCR targeting amoA genes encoding the alpha subunit of ammonia monooxygenase also revealed a high genetic potential for ammonia oxidation dominated by archaea (~5 × 107 archaeal amoA gene copies g−1 soil vs. mostly < 7 × 104 bacterial amoA gene copies g−1 soil). Abundances of archaeal 16S rRNA and amoA genes were positively correlated with soil nitrate, N and C contents. Nitrospira sp. was detected as the most abundant group of nitrite oxidizing bacteria. The specific geochemical conditions and particle transport dynamics at the granitic catena were found to affect soil microbial communities through clay and nutrient relocation along the hill slope, causing a shift to different, less diverse bacterial and archaeal communities at the footslope. Overall, our results suggest a strong effect of the savanna soils' nutrient scarcity on all microbial communities, resulting in a distinct community structure that differs markedly from nutrient-rich, temperate grasslands, along with a high relevance of archaeal ammonia oxidation in savanna soils

    Reviewing the Carbonation Resistance of Concrete

    Get PDF
    The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2) penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs)/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefl

    Controls on timescales of soil organic carbon persistence across sub-Saharan Africa

    Get PDF
    Given the importance of soil for the global carbon cycle, it is essential to understand not only how much carbon soil stores but also how long this carbon persists. Previous studies have shown that the amount and age of soil carbon are strongly affected by the interaction of climate, vegetation, and mineralogy. However, these findings are primarily based on studies from temperate regions and from fine-scale studies, leaving large knowledge gaps for soils from understudied regions such as sub-Saharan Africa. In addition, there is a lack of data to validate modeled soil C dynamics at broad scales. Here, we present insights into organic carbon cycling, based on a new broad-scale radiocarbon and mineral dataset for sub-Saharan Africa. We found that in moderately weathered soils in seasonal climate zones with poorly crystalline and reactive clay minerals, organic carbon persists longer on average (topsoil: 201 ± 130 years; subsoil: 645 ± 385 years) than in highly weathered soils in humid regions (topsoil: 140 ± 46 years; subsoil: 454 ± 247 years) with less reactive minerals. Soils in arid climate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years) store organic carbon for periods more similar to those in seasonal climate zones, likely reflecting climatic constraints on weathering, carbon inputs and microbial decomposition. These insights into the timescales of organic carbon persistence in soils of sub-Saharan Africa suggest that a process-oriented grouping of soils based on pedo-climatic conditions may be useful to improve predictions of soil responses to climate change at broader scales
    • …
    corecore