123 research outputs found

    Avaliação experimental dos métodos de prevenção de fissuras na interface alvenaria de vedação e pilar de concreto

    Get PDF
    Cracks that form at the interfaces between masonry structures are common uncontrolled occurrences in buildings. Numerous methods have been proposed by the construction industry to address this problem. Cracks continuously form in the joints between concrete columns and masonry infill walls. In this study, the most common methods for preventing these types of cracks were evaluated in laboratory experiments. Column masonry models were constructed using different types of joints between concrete columns and masonry infill walls, such as steel bars and steel mesh. The efficiency of each type of joint method was evaluated by performing direct tensile tests (pullout tests) on the models and monitoring the evolution of the crack opening in the joint between the column and wall, as a function of load applied to the model. The results from this study indicate that the model composed of electrowelded wire mesh without steel angles is the best model for controlling cracking in the joints between concrete columns and masonry infill walls.As fissuras na interface alvenaria/estrutura são ocorrências patológicas comuns nas edificações e muitos são os métodos propostos pela indústria da construção que prometem evitar este problema. De caráter recorrente encontram-se as fissuras na ligação pilar de concreto e parede de alvenaria. Neste trabalho, são avaliados, em laboratório, os métodos mais usuais de prevenção deste tipo de fissura. Modelos pilar/alvenaria foram construídos utilizando-se diferentes tipologias de ligação entre o pilar de concreto e a parede de alvenaria, desde o usual ferro cabelo até telas de aço. A eficiência de cada um destes métodos de ligação foi avaliada por intermédio de ensaio dos modelos à tração direta, com o monitoramento da evolução da abertura da fissura na ligação pilar/parede em função do incremento de carga aplicada ao modelo. Os resultados desta pesquisa indicaram o modelo composto por tela metálica eletrossoldada, e sem cantoneira de aço, como a melhor técnica de controle da fissuração na ligação pilar de concreto e parede de alvenaria, dentre todos os modelos avaliados.76577

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity

    Pollutants Increase Song Complexity and the Volume of the Brain Area HVC in a Songbird

    Get PDF
    Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris) exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC) is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds

    Non-Breeding Song Rate Reflects Nutritional Condition Rather than Body Condition

    Get PDF
    Numerous studies have focused on song in songbirds as a signal involved in mate choice and intrasexual competition. It is expected that song traits such as song rate reflect individual quality by being dependent on energetic state or condition. While seasonal variation in bird song (i.e., breeding versus non-breeding song) and its neural substrate have received a fair amount of attention, the function and information content of song outside the breeding season is generally much less understood. Furthermore, typically only measures of condition involving body mass are examined with respect to song rate. Studies investigating a potential relationship between song rate and other indicators of condition, such as physiological measures of nutritional condition, are scant. In this study, we examined whether non-breeding song rate in male European starlings (Sturnus vulgaris) reflects plasma metabolite levels (high-density lipoproteins (HDL), albumin, triglycerides and cholesterol) and/or body mass. Song rate was significantly positively related to a principal component representing primarily HDL, albumin and cholesterol (and to a lesser degree plasma triglyceride levels). There was only a trend toward a significant positive correlation between song rate and body mass, and no significant correlation between body mass and the abovementioned principal component. Therefore, our results indicate that nutritional condition and body mass represent different aspects of condition, and that song rate reflects nutritional rather than body condition. Additionally, we also found that intra-individual song rate consistency (though not song rate itself) was significantly positively related to lutein levels, but not to body mass or nutritional condition. Together our results suggest that the relation between physiological measures of nutritional condition and song rate, as well as other signals, may present an interesting line of future research, both inside and outside the breeding season

    Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    Get PDF
    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion rate may partly explain some contradictory findings in the literature. Moreover, most studies on the effect of T on sexual signals have focused on the male sex only, while in many species females show the same signal, albeit to a lesser extent. We studied the effects of T, DHT, and E2 treatment in male and female diamond doves Geopelia cuneata in which both sexes have an enlarged red eye ring, which is more pronounced in males. We first showed that this periorbital ring contains very high concentration of carotenoids, of which most are lutein esters. Both T and DHT were effective in enhancing hue, UV-chroma and size in both sexes, while E2 was ineffective. However, E2 dramatically increased the concentration of circulating lipoproteins. We conclude that in both sexes both color and size of the secondary sexual trait are androgen dependent. The action of androgens is independent of lipoproteins regulation. Potential mechanisms and their consequences for trade-off are discussed

    The interplay between gonadal steroids and immune defence in affecting a carotenoid-dependent trait

    Get PDF
    The hypothesis that sexual ornaments are honest signals of quality because their expression is dependent on hormones with immune-depressive effects has received ambiguous support. The hypothesis might be correct for those signals that are carotenoid-dependent because the required carotenoid deposition in the signal, stimulated by testosterone, might lower the carotenoid-dependent immune defence of the organism. Two pathways underlying this androgen-dependent honest signaling have been suggested. Firstly, androgens that are needed for ornament expression may suppress immune defence, a cost that only high-quality animals can afford. Alternatively, immune activation may downregulate the production of androgens in low-quality individuals. Which of these alternatives is correct, and to what extent these effects are mediated by the different metabolites of androgens, remain open questions. To provide answers to these questions, we manipulated the levels of testosterone (T), 5α-dihydrotestosterone (DHT), and 17-β-estradiol (E2) in diamond doves Geopelia cuneata, a species in which both sexes exhibit a carotenoid-dependent, androgen-regulated red–orange periorbital ring of bare skin. On the first day of the experiment (day 0), we inserted steroid-releasing implants into groups of birds and on day 14, we subjected half of the birds to an immunological challenge by immunizing them with sheep red blood cells (SRBC). In females, but not in males, androgen but not estradiol treatments reduced antibody production to SRBC. In addition, the immunological challenge reduced redness and size of the trait as well as androgens levels in both sexes and in all treatments. This indicates that an immunological challenge can lower circulating T at the cost of the trait expression. These findings are in accordance with both pathways postulated in the immunocompetence-handicap hypothesis, but do not entirely support the idea that the immunosuppressive effect of androgens yields honest signaling since both T and DHT were not immunosuppressive in males, for which sexual signaling is supposed to be especially important

    Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis.

    Get PDF
    The gene for the atypical NOTCH ligand delta-like homologue 1 (Dlk1) encodes membrane-bound and secreted isoforms that function in several developmental processes in vitro and in vivo. Dlk1, a member of a cluster of imprinted genes, is expressed from the paternally inherited chromosome. Here we show that mice that are deficient in Dlk1 have defects in postnatal neurogenesis in the subventricular zone: a developmental continuum that results in depletion of mature neurons in the olfactory bulb. We show that DLK1 is secreted by niche astrocytes, whereas its membrane-bound isoform is present in neural stem cells (NSCs) and is required for the inductive effect of secreted DLK1 on self-renewal. Notably, we find that there is a requirement for Dlk1 to be expressed from both maternally and paternally inherited chromosomes. Selective absence of Dlk1 imprinting in both NSCs and niche astrocytes is associated with postnatal acquisition of DNA methylation at the germ-line-derived imprinting control region. The results emphasize molecular relationships between NSCs and the niche astrocyte cells of the microenvironment, identifying a signalling system encoded by a single gene that functions coordinately in both cell types. The modulation of genomic imprinting in a stem-cell environment adds a new level of epigenetic regulation to the establishment and maintenance of the niche, raising wider questions about the adaptability, function and evolution of imprinting in specific developmental contexts
    corecore