8 research outputs found

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    A New (Old), Invasive Ant in the Hardwood Forests of Eastern North America and Its Potentially Widespread Impacts

    Get PDF
    Biological invasions represent a serious threat for the conservation of biodiversity in many ecosystems. While many social insect species and in particular ant species have been introduced outside their native ranges, few species have been successful at invading temperate forests. In this study, we document for the first time the relationship between the abundance of the introduced ant, Pachycondyla chinensis, in mature forests of North Carolina and the composition, abundance and diversity of native ant species using both a matched pair approach and generalized linear models. Where present, P. chinensis was more abundant than all native species combined. The diversity and abundance of native ants in general and many individual species were negatively associated with the presence and abundance of P. chinensis. These patterns held regardless of our statistical approach and across spatial scales. Interestingly, while the majority of ant species was strongly and negatively correlated with the abundance and presence of P. chinensis, a small subset of ant species larger than P. chinensis was either as abundant or even more abundant in invaded than in uninvaded sites. The large geographic range of this ant species combined with its apparent impact on native species make it likely to have cascading consequences on eastern forests in years to come, effects mediated by the specifics of its life history which is very different from those of other invasive ants. The apparent ecological impacts of P. chinensis are in addition to public health concerns associated with this species due to its sometimes, deadly sting

    Biodiversity on Broadway - Enigmatic Diversity of the Societies of Ants (Formicidae) on the Streets of New York City

    Get PDF
    Each year, a larger proportion of the Earth's surface is urbanized, and a larger proportion of the people on Earth lives in those urban areas. The everyday nature, however, that humans encounter in cities remains poorly understood. Here, we consider perhaps the most urban green habitat, street medians. We sampled ants from forty-four medians along three boulevards in New York City and examined how median properties affect the abundance and species richness of native and introduced ants found on them. Ant species richness varied among streets and increased with area but was independent of the other median attributes measured. Ant assemblages were highly nested, with three numerically dominant species present at all medians and additional species present at a subset of medians. The most common ant species were the introduced Pavement ant (Tetramorium caespitum) and the native Thief ant (Solenopsis molesta) and Cornfield ant (Lasius neoniger). The common introduced species on the medians responded differently to natural and disturbed elements of medians. Tetramorium caespitum was most abundant in small medians, with the greatest edge/area ratio, particularly if those medians had few trees, whereas Nylanderia flavipes was most abundant in the largest medians, particularly if they had more trees. Many of the species encountered in Manhattan were similar to those found in other large North American cities, such that a relatively small subset of ant species probably represent most of the encounters humans have with ants in North America

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Animal and marine lipids

    No full text
    corecore