25 research outputs found
Eaten out of house and home:impacts of grazing on ground-dwelling reptiles in Australian grasslands and grassy woodlands
Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing
Enhanced Migratory Waterfowl Distribution Modeling by Inclusion of Depth to Water Table Data
In addition to being used as a tool for ecological understanding, management and conservation of migratory waterfowl rely heavily on distribution models; yet these models have poor accuracy when compared to models of other bird groups. The goal of this study is to offer methods to enhance our ability to accurately model the spatial distributions of six migratory waterfowl species. This goal is accomplished by creating models based on species-specific annual cycles and introducing a depth to water table (DWT) data set. The DWT data set, a wetland proxy, is a simulated long-term measure of the point either at or below the surface where climate and geological/topographic water fluxes balance. For species occurrences, the USGS' banding bird data for six relatively common species was used. Distribution models are constructed using Random Forest and MaxEnt. Random Forest classification of habitat and non-habitat provided a measure of DWT variable importance, which indicated that DWT is as important, and often more important, to model accuracy as temperature, precipitation, elevation, and an alternative wetland measure. MaxEnt models that included DWT in addition to traditional predictor variables had a considerable increase in classification accuracy. Also, MaxEnt models created with DWT often had higher accuracy when compared with models created with an alternative measure of wetland habitat. By comparing maps of predicted probability of occurrence and response curves, it is possible to explore how different species respond to water table depth and how a species responds in different seasons. The results of this analysis also illustrate that, as expected, all waterfowl species are tightly affiliated with shallow water table habitat. However, this study illustrates that the intensity of affiliation is not constant between seasons for a species, nor is it consistent between species
Agroecosystems and conservation of migratory waterbirds: importance of coastal pastures and factors influencing their use by wintering shorebirds
Coastal pastures are common agroecosystems adjacent to estuarine areas that can provide valuable habitat for wildlife, particularly for migratory shorebirds. Disentangling the factors that influence coastal pasture use by wintering shorebirds will provide new insights into its role for buffering human disturbances and habitat loss in intertidal areas. We examined whether numbers of two shorebirds (Eurasian curlew and Black-tailed godwit) foraging actively on coastal pastures was affected by weather conditions, tidal stage (low/high tide) and number of harvesters at intertidal areas throughout winter. Both species frequently used coastal pastures and most individuals foraged actively there. The average percentage of the total wintering population of curlews and godwits foraging on coastal pastures was 27.4 and 7.8 %, respectively, and was significantly higher during high tide compared to low tide. The number of harvesters on mudflats also had a positive significant effect in explaining the presence of curlews, and to a lesser extent for godwits, on coastal pastures, and accumulated rainfall had a positive effect for both species too. These supratidal areas were consistently used as alternative foraging grounds during low tide by curlews, as well as supplementary foraging areas during high tide by wintering populations of both large shorebirds. By supplementary foraging, wintering curlews, and probably godwits, seemed to compensate for a negative effect of the presence of harvesters on their foraging activity. We recommend managing of those coastal agricultural fields adjacent to intertidal foraging grounds in order to increase the availability of supratidal foraging habitats for declining shorebird populations. These habitats may thus have a beneficial role in sustaining populations of wintering shorebirds, but further studies are needed to estimate if birds can compensate for any shortfall in daily energy budget by supplementary foraging on coastal pastures, thus providing insights into whether they are involved in large-scale population regulation of migratory birds
