23,098 research outputs found
Discrete-Time Fractional Variational Problems
We introduce a discrete-time fractional calculus of variations on the time
scale , . First and second order necessary optimality
conditions are established. Examples illustrating the use of the new
Euler-Lagrange and Legendre type conditions are given. They show that solutions
to the considered fractional problems become the classical discrete-time
solutions when the fractional order of the discrete-derivatives are integer
values, and that they converge to the fractional continuous-time solutions when
tends to zero. Our Legendre type condition is useful to eliminate false
candidates identified via the Euler-Lagrange fractional equation.Comment: Submitted 24/Nov/2009; Revised 16/Mar/2010; Accepted 3/May/2010; for
publication in Signal Processing
Search for Associations Containing Young stars (SACY): Chemical tagging IC 2391 & the Argus association
We explore the possible connection between the open cluster IC 2391 and the
unbound Argus association identified by the SACY survey. In addition to common
kinematics and ages between these two systems, here we explore their chemical
abundance patterns to confirm if the two substructures shared a common origin.
We carry out a homogenous high-resolution elemental abundance study of eight
confirmed members of IC 2391 as well as six members of the Argus association
using UVES spectra. We derive spectroscopic stellar parameters and abundances
for Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni and Ba.
All stars in the open cluster and Argus association were found to share
similar abundances with the scatter well within the uncertainties, where [Fe/H]
= -0.04 +/-0.03 for cluster stars and [Fe/H] = -0.06 +/-0.05 for Argus stars.
Effects of over-ionisation/excitation were seen for stars cooler than roughly
5200K as previously noted in the literature. Also, enhanced Ba abundances of
around 0.6 dex were observed in both systems. The common ages, kinematics and
chemical abundances strongly support that the Argus association stars
originated from the open cluster IC 2391. Simple modeling of this system find
this dissolution to be consistent with two-body interactions.Comment: 17 pages, 7 figs, accepted for publication in MNRA
Lifetimes of Confined Acoustic Phonons in Ultra-Thin Silicon Membranes
We study the relaxation of coherent acoustic phonon modes with frequencies up
to 500 GHz in ultra-thin free-standing silicon membranes. Using an ultrafast
pump-probe technique of asynchronous optical sampling, we observe that the
decay time of the first-order dilatational mode decreases significantly from
\sim 4.7 ns to 5 ps with decreasing membrane thickness from \sim 194 to 8 nm.
The experimental results are compared with theories considering both intrinsic
phonon-phonon interactions and extrinsic surface roughness scattering including
a wavelength-dependent specularity. Our results provide insight to understand
some of the limits of nanomechanical resonators and thermal transport in
nanostructures
SACY - a Search for Associations Containing Young stars
The scientific goal of the SACY (Search for Associations Containing
Young-stars) was to identify possible associations of stars younger than the
Pleiades Association among optical counterparts of the ROSAT X-ray bright
sources. High-resolution spectra for possible optical counterparts later than
G0 belonging to HIPPARCOS and/or TYCHO-2 catalogs were obtained in order to
assess both the youth and the spatial motion of each target. More than 1000
ROSAT sources were observed, covering a large area in the Southern Hemisphere.
The newly identified young stars present a patchy distribution in UVW and XYZ,
revealing the existence of huge nearby young associations. Here we present the
associations identified in this survey.Comment: 8 pages, 2 figures, to appear in the Proceedings of Open Issues in
Local Formation and Early Stellar Evolution, Ouro Preto, Brazi
Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
Spin Hall effects have surged as promising phenomena for spin logics
operations without ferromagnets. However, the magnitude of the detected
electric signals at room temperature in metallic systems has been so far
underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the
signal in monolayer graphene/Pt devices when compared to their fully metallic
counterparts. The enhancement stems in part from efficient spin injection and
the large resistivity of graphene but we also observe 100% spin absorption in
Pt and find an unusually large effective spin Hall angle of up to 0.15. The
large spin-to-charge conversion allows us to characterise spin precession in
graphene under the presence of a magnetic field. Furthermore, by developing an
analytical model based on the 1D diffusive spin-transport, we demonstrate that
the effective spin-relaxation time in graphene can be accurately determined
using the (inverse) spin Hall effect as a means of detection. This is a
necessary step to gather full understanding of the consequences of spin
absorption in spin Hall devices, which is known to suppress effective spin
lifetimes in both metallic and graphene systems.Comment: 14 pages, 6 figures. Accepted in 2D Materials.
https://doi.org/10.1088/2053-1583/aa882
- …