3,033 research outputs found
Long wavelength iteration of Einstein's equations near a spacetime singularity
We clarify the links between a recently developped long wavelength iteration
scheme of Einstein's equations, the Belinski Khalatnikov Lifchitz (BKL) general
solution near a singularity and the antinewtonian scheme of Tomita's. We
determine the regimes when the long wavelength or antinewtonian scheme is
directly applicable and show how it can otherwise be implemented to yield the
BKL oscillatory approach to a spacetime singularity. When directly applicable
we obtain the generic solution of the scheme at first iteration (third order in
the gradients) for matter a perfect fluid. Specializing to spherical symmetry
for simplicity and to clarify gauge issues, we then show how the metric behaves
near a singularity when gradient effects are taken into account.Comment: 35 pages, revtex, no figure
Cross-Correlating Cosmic Microwave Background Radiation Fluctuations with Redshift Surveys: Detecting the Signature of Gravitational Lensing
Density inhomogeneities along the line-of-sight distort fluctuations in the
cosmic microwave background. Usually, this effect is thought of as a small
second-order effect that mildly alters the statistics of the microwave
background fluctuations. We show that there is a first-order effect that is
potentially observable if we combine microwave background maps with large
redshift surveys. We introduce a new quantity that measures this lensing
effect, , where T is the microwave
background temperature and is the lensing due to matter in the
region probed by the redshift survey. We show that the expected signal is first
order in the gravitational lensing bending angle, , and find that it should be easily detectable, (S/N) 15-35, if
we combine the Microwave Anisotropy Probe satellite and Sloan Digital Sky
Survey data. Measurements of this cross-correlation will directly probe the
``bias'' factor, the relationship between fluctuations in mass and fluctuations
in galaxy counts.Comment: 13 pages, 4 postscript figures included; Uses aaspp4.sty (AASTeX
v4.0); Accepted for publication in Astrophysical Journal, Part
The Stellar Population of the M31 Spiral Arm Around OB Association A24
A study of the stellar population of the M31 spiral arm around OB association
A24 was carried out based on the photometric data obtained from deep V and JHK
imaging. The luminosity function was obtained for -7 <~ Mbol <~ -3.5 by
applying the extinction correction corresponding to Av=1 and the bolometric
correction BC(K) as an empirical function of (J-K)o. In comparing the observed
color-luminosity diagrams with semitheoretical isochrones modified for the
dust-shell effects, we found the young population of t <~ 30 Myr with
supergiants of Mbol <~ -5, the bulk of the intermediate-age population of t ~
0.2 - 2.5 Gyr with bright asymptotic giant branch (AGB) stars of -5 <~ Mbol <~
-4, and old populations of t ~> 3 Gyr with AGB and red giant branch (RGB) stars
of Mbol ~> -4. The average star formation rate was estimated to be ~1.8x10^4
M_o/Myr and ~0.7x10^4 M_o/Myr per deprojected disk area of 1 kpc^2 from the
number density of B0 V stars around Mv=-4.0 (age ~10 Myr) and the number
density of bright AGB stars around Mbol = -4.3 (age ~1 Gyr), respectively. A
study of the local variation in the V and the J and H luminosity functions
revealed a kind of anticorrelation between the population of the young
component and that of the intermediate-age component when subdomains of ~100 pc
scales were concerned. This finding suggests that the disk domain around the
A24 area experienced a series of star formation episodes alternatively among
different subdomains with a timescale of a few spiral passage periods. Brief
discussions are given about the interstellar extinction and about the lifetimes
of bright AGB stars and the highly red objects (HROs) in the same area.Comment: 27 pages, 11 figures, accepted: ApJ, July 1, 199
Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region
We have performed a systematic study of several regions in the sky where the
number of galaxies exhibiting star formation (SF) activity is greater than
average. We used Kiso ultraviolet-excess galaxies (KUGs) as our SF-enhanced
sample. By statistically comparing the KUG and non-KUG distributions, we
discovered four KUG-rich regions with a size of . One of these regions corresponds spatially to a filament of length
Mpc in the Lynx-Ursa Major region (). We call this ``the Lynx-Ursa
Major (LUM) filament''. We obtained surface photometry of 11 of
the KUGs in the LUM filament and used these to investigate the integrated
colors, distribution of SF regions, morphologies, and local environments. We
found that these KUGs consist of distorted spiral galaxies and compact galaxies
with blue colors. Their star formation occurs in the entire disk, and is not
confined to just the central regions. The colors of the SF regions imply that
active star formation in the spiral galaxies occurred yr ago,
while that of the compact objects occurred yr ago. Though the
photometric characteristics of these KUGs are similar to those of interacting
galaxies or mergers, most of these KUGs do not show direct evidence of merger
processes.Comment: 39 pages LaTeX, using aasms4.sty, 20 figures, ApJS accepted. The
Title of the previous one was truncated by the author's mistake, and is
corrected. Main body of the paper is unchange
Long-wavelength iteration scheme and scalar-tensor gravity
Inhomogeneous and anisotropic cosmologies are modeled withing the framework
of scalar-tensor gravity theories. The inhomogeneities are calculated to
third-order in the so-called long-wavelength iteration scheme. We write the
solutions for general scalar coupling and discuss what happens to the
third-order terms when the scalar-tensor solution approaches at first-order the
general relativistic one. We work out in some detail the case of Brans-Dicke
coupling and determine the conditions for which the anisotropy and
inhomogeneity decay as time increases. The matter is taken to be that of
perfect fluid with a barotropic equation of state.Comment: 13 pages, requires REVTeX, submitted to Phys. Rev.
Cosmic Microwave Background anisotropies from second order gravitational perturbations
This paper presents a complete analysis of the effects of second order
gravitational perturbations on Cosmic Microwave Background anisotropies, taking
explicitly into account scalar, vector and tensor modes. We also consider the
second order perturbations of the metric itself obtaining them, for a universe
dominated by a collision-less fluid, in the Poisson gauge, by transforming the
known results in the synchronous gauge. We discuss the resulting second order
anisotropies in the Poisson gauge, and analyse the possible relevance of the
different terms. We expect that, in the simplest scenarios for structure
formation, the main effect comes from the gravitational lensing by scalar
perturbations, that is known to give a few percent contribution to the
anisotropies at small angular scales.Comment: 15 pages, revtex, no figures. Version to be published in Phys. Rev.
Metastable lifetimes in a kinetic Ising model: Dependence on field and system size
The lifetimes of metastable states in kinetic Ising ferromagnets are studied
by droplet theory and Monte Carlo simulation, in order to determine their
dependences on applied field and system size. For a wide range of fields, the
dominant field dependence is universal for local dynamics and has the form of
an exponential in the inverse field, modified by universal and nonuniversal
power-law prefactors. Quantitative droplet-theory predictions are numerically
verified, and small deviations are shown to depend nonuniversally on the
details of the dynamics. We identify four distinct field intervals in which the
field dependence and statistical properties of the lifetimes are different. The
field marking the crossover between the weak-field regime, in which the decay
is dominated by a single droplet, and the intermediate-field regime, in which
it is dominated by a finite droplet density, vanishes logarithmically with
system size. As a consequence the slow decay characteristic of the former
regime may be observable in systems that are macroscopic as far as their
equilibrium properties are concerned.Comment: 18 pages single spaced. RevTex Version 3. FSU-SCRI-94-1
Effect of Void Network on CMB Anisotropy
We study the effect of a void network on the CMB anisotropy in the
Einstein-de Sitter background using Thompson &Vishniac's model. We consider
comprehensively the Sacks-Wolfe effect, the Rees-Sciama effect and the
gravitational lensing effect. Our analysis includes the model of primordial
voids existing at recombination, which is realized in some inflationary models
associated with a first-order phase transition. If there exist primordial voids
whose comoving radius is larger than Mpc at recombination, not
only the Sachs-Wolfe effect but also the Rees-Sciama effect is appreciable even
for multipoles l\lsim1000 of the anisotropy spectrum. The gravitational
lensing effect, on the other hand, slightly smoothes the primary anisotropy;
quantitatively, our results for the void model are similar to the previous
results for a CDM model. All the effects, together, would give some constraints
on the configuration or origin of voids with high-resolution data of the CMB
anisotropy.Comment: 23 pages, latex, 12 eps figures, some calculations and discussions
are added, to appear in ApJ 510 (1999
Existence of Dynamical Scaling in the Temporal Signal of Time Projection Chamber
The temporal signals from a large gas detector may show dynamical scaling due
to many correlated space points created by the charged particles while passing
through the tracking medium. This has been demonstrated through simulation
using realistic parameters of a Time Projection Chamber (TPC) being fabricated
to be used in ALICE collider experiment at CERN. An interesting aspect of this
dynamical behavior is the existence of an universal scaling which does not
depend on the multiplicity of the collision. This aspect can be utilised
further to study physics at the device level and also for the online monitoring
of certain physical observables including electronics noise which are a few
crucial parameters for the optimal TPC performance.Comment: 5 pages, 6 figure
Universal bifurcation property of two- or higher-dimensional dissipative systems in parameter space: Why does 1D symbolic dynamics work so well?
The universal bifurcation property of the H\'enon map in parameter space is
studied with symbolic dynamics. The universal- region is defined to
characterize the bifurcation universality. It is found that the universal-
region for relative small is not restricted to very small values. These
results show that it is also a universal phenomenon that universal sequences
with short period can be found in many nonlinear dissipative systems.Comment: 10 pages, figures can be obtained from the author, will appeared in
J. Phys.
- …
