87 research outputs found

    Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    Get PDF
    Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets

    Down Hole Experiment to Monitor Water Circulation Associated with Earthquake at Eastern Nankai Trough

    No full text

    Modes of occurrence and geochemistry at DSDP Holes 69-505A and 69-505B

    No full text
    The compositions of chrome spinels of Costa Rica Rift basalts from Deep Sea Drilling Project Site 505 vary depending on their occurrences as (1) inclusions in olivine crystals, (2) inclusions in Plagioclase crystals, and (3) isolated crystals in variolitic or glassy samples. The variations are a consequence of (1) changes of melt compositions as crystallization proceeds, and (2) contrasting behavior of olivine and Plagioclase in competition with spinels for Al and Mg. Some spinels have skeletal rims compositionally less magnesian than mineral cores; however, the cores do not appear to be xenocrysts, unlike some texturally similar spinels in Mid-Atlantic Ridge basalts

    Chemical composition of igneous rocks and origin of the sill and pillow-basalt complex at DSDP Site 61-462

    No full text
    The sill and pillow complex cored on Deep Sea Drilling Project Leg 61 (Site 462) is divided into two groups, A and B types, on the basis of chemical composition and volcanostratigraphy. The A-type basalt is characterized by a higher FeO*/MgO ratio and abundant TiO2, whereas the B-type basalt is characterized by a lower FeO*/MgO ratio and scarcity of TiO2. The A type is composed of sills interbedded with hyaloclastic sediments, and the B type consists of basalt sills and pillow basalt with minor amounts of sediment. However, the structure of pillow basalts in the B type is atypical; they might be eruptive. From paleontological study of the interbedded sediments and radiometric age determination of the basalt, the volcanic event of A type is assumed to be Cenomanian to Aptian, and that of B type somewhat older. The oceanic crust in the Nauru Basin was assumed to be Oxfordian, based on the Mesozoic magnetic anomaly. Consequently, two events of intraplate volcanism are recognized. It is thus assumed that the sill-pillow complex did not come from a normal oceanic ridge, and that normal oceanic basement could therefore underlie the complex. The Site 462 basalts are quartz-normative, and strongly hypersthene-normative, and have a higher FeO*/MgO ratio and lower TiO2 content. Olivine from the Nauru Basin basalts has a lower Mg/(Mg + Fe**2+) ratio (0.83-0.84) and coexists with spinel of lower Mg/(Mg + Fe**2+) ratio when compared to olivine-spinel pairs from mid-ocean ridge (MAR) basalt. The glass of spinel-bearing basalts has a higher FeO*/(FeO* + MgO) ratio (0.58-0.60) than that of MAR (<0.575). Therefore, the Nauru Basin basalts are chemically and mineralogically distinct from ocean-ridge tholeiite. That the Nauru Basin basalts are quartz-normative and strongly hypersthene-normative and have a lower TiO2 content suggests that the basaltic liquids of Site 462 were generated at shallower depths (<5 kbar) than ocean-ridge tholeiite: Site 462 basalts are similar to basalts from the Manihiki Plateau and the Ontong-Java Plateau, but different from Hawaiian tholeiite of hot-spot type, with lower K2O and TiO2 content. We propose a new type of basalt, ocean-plateau tholeiite, a product of intraplate volcanism
    corecore