49 research outputs found

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Kirchhoff’s Thermal Radiation from Lithography-Free Black Metals

    No full text
    Lithography-free black metals composed of a nano-layered stack of materials are attractive not only due to their optical properties but also by virtue of fabrication simplicity and the cost reduction of devices based on such structures. We demonstrate multi-layer black metal layered structures with engineered electromagnetic absorption in the mid-infrared (MIR) wavelength range. Characterization of thin SiO2 and Si films sandwiched between two Au layers by way of experimental electromagnetic radiation absorption and thermal radiation emission measurements as well as finite difference time domain (FDTD) numerical simulations is presented. Comparison of experimental and simulation data derived optical properties of multi-layer black metals provide guidelines for absorber/emitter structure design and potential applications. In addition, relatively simple lithography-free multi-layer structures are shown to exhibit absorber/emitter performance that is on par with what is reported in the literature for considerably more elaborate nano/micro-scale patterned metasurfaces
    corecore