263 research outputs found

    Dendritic Spine Shape Analysis: A Clustering Perspective

    Get PDF
    Functional properties of neurons are strongly coupled with their morphology. Changes in neuronal activity alter morphological characteristics of dendritic spines. First step towards understanding the structure-function relationship is to group spines into main spine classes reported in the literature. Shape analysis of dendritic spines can help neuroscientists understand the underlying relationships. Due to unavailability of reliable automated tools, this analysis is currently performed manually which is a time-intensive and subjective task. Several studies on spine shape classification have been reported in the literature, however, there is an on-going debate on whether distinct spine shape classes exist or whether spines should be modeled through a continuum of shape variations. Another challenge is the subjectivity and bias that is introduced due to the supervised nature of classification approaches. In this paper, we aim to address these issues by presenting a clustering perspective. In this context, clustering may serve both confirmation of known patterns and discovery of new ones. We perform cluster analysis on two-photon microscopic images of spines using morphological, shape, and appearance based features and gain insights into the spine shape analysis problem. We use histogram of oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological features, and intensity profile based features for cluster analysis. We use x-means to perform cluster analysis that selects the number of clusters automatically using the Bayesian information criterion (BIC). For all features, this analysis produces 4 clusters and we observe the formation of at least one cluster consisting of spines which are difficult to be assigned to a known class. This observation supports the argument of intermediate shape types.Comment: Accepted for BioImageComputing workshop at ECCV 201

    Nanomechanical Detection of Itinerant Electron Spin Flip

    Full text link
    Spin is an intrinsically quantum property, characterized by angular momentum. A change in the spin state is equivalent to a change in the angular momentum or mechanical torque. This spin-induced torque has been invoked as the intrinsic mechanism in experiments ranging from the measurements of angular momentum of photons g-factor of metals and magnetic resonance to the magnetization reversal in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic nanowire produces a torque associated with the itinerant electron spin flip. Here, we report direct measurement of this mechanical torque and itinerant electron spin polarization in an integrated nanoscale torsion oscillator, which could yield new information on the itinerancy of the d-band electrons. The unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable applications for spintronics, precision measurements of CP-violating forces, untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper

    A pilot randomized controlled trial of a stepped care intervention package for depression in primary care in Nigeria

    Get PDF
    Background Depression is common in primary care and is often unrecognized and untreated. Studies are needed to demonstrate the feasibility of implementing evidence-based depression care provided by primary health care workers (PHCWs) in sub-Saharan Africa. We carried out a pilot two-parallel arm cluster randomized controlled trial of a package of care for depression in primary care. Methods Six primary health care centers (PHCC) in two Local Government Areas of Oyo State, South West Nigeria were randomized into 3 intervention and 3 control clinics. Three PHCWs were selected for training from each of the participating clinics. The PHCWs from the intervention clinics were trained to deliver a manualized multicomponent stepped care intervention package for depression consisting of psychoeducation, activity scheduling, problem solving treatment and medication for severe depression. Providers from the control clinics delivered care as usual, enhanced by a refresher training on depression diagnosis and management. Outcome measures Patient’s Health Questionnaire (PHQ-9), WHO quality of Life instrument (WHOQOL-Bref) and the WHO disability assessment schedule (WHODAS) were administered in the participants’ home at baseline, 3 and 6 months. Results About 98% of the consecutive attendees to the clinics agreed to have the screening interview. Of those screened, 284 (22.7%) were positive (PHQ-9 score ≥ 8) and 234 gave consent for inclusion in the study: 165 from intervention and 69 from control clinics. The rates of eligible and consenting participants were similar in the control and intervention arms. In all 85.9% (92.8% in intervention and 83% in control) of the participants were successfully administered outcome assessments at 6 months. The PHCWs had little difficulty in delivering the intervention package. At 6 months follow up, depression symptoms had improved in 73.0% from the intervention arm compared to 51.6% control. Compared to the mean scores at baseline, there was improvement in the mean scores on all outcome measures in both arms at six months. Conclusion The results provide support for the feasibility of conducting a fully-powered randomized study in this setting and suggest that the instruments used may have the potential to detect differences between the arms

    Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    Get PDF
    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats

    Nature and consequences of interactions between Salmonella enterica serovar Dublin and host cells in cattle

    Get PDF
    International audienceAbstractSalmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity

    Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition

    Get PDF
    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes1, 2, 3, 4, 5. By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.National Science Foundation (U.S.)Howard Hughes Medical Institut

    The Evolution of Extracellular Fibrillins and Their Functional Domains

    Get PDF
    Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and non-elastic extracellular matrices, and are known to interact with several binding partners including tropoelastin and integrins. Here, we study the evolution of fibrillin proteins. Following sequence collection from 39 organisms representative of the major evolutionary groups, molecular evolutionary genetics and phylogeny inference software were used to generate a series of evolutionary trees using distance-based and maximum likelihood methods. The resulting trees support the concept of gene duplication as a means of generating the three vertebrate fibrillins. Beginning with a single fibrillin sequence found in invertebrates and jawless fish, a gene duplication event, which coincides with the appearance of elastin, led to the creation of two genes. One of the genes significantly evolved to become the gene for present-day fibrillin-1, while the other underwent evolutionary changes, including a second duplication, to produce present-day fibrillin-2 and fibrillin-3. Detailed analysis of several sequences and domains within the fibrillins reveals distinct similarities and differences across various species. The RGD integrin-binding site in TB4 of all fibrillins is conserved in cephalochordates and vertebrates, while the integrin-binding site within cbEGF18 of fibrillin-3 is a recent evolutionary change. The proline-rich domain in fibrillin-1, glycine-rich domain in fibrillin-2 and proline-/glycine-rich domain in fibrillin-3 are found in all analyzed tetrapod species, whereas it is completely replaced with an EGF-like domain in cnidarians, arthropods, molluscs and urochordates. All collected sequences contain the first 9-cysteine hybrid domain, and the second 8-cysteine hybrid domain with exception of arthropods containing an atypical 10-cysteine hybrid domain 2. Furin cleavage sites within the N- and C-terminal unique domains were found for all analyzed fibrillin sequences, indicating an essential role for processing of the fibrillin pro-proteins. The four cysteines in the unique N-terminus and the two cysteines in the unique C-terminus are also highly conserved

    Novel M tuberculosis Antigen-Specific T-Cells Are Early Markers of Infection and Disease Progression

    Get PDF
    Mycobacterium tuberculosis Region-of-Difference-1 gene products present opportunities for specific diagnosis of M. tuberculosis infection, yet immune responses to only two gene-products, Early Secretory Antigenic Target-6 (ESAT-6) and Culture Filtrate Protein-10 (CFP-10), have been comprehensively investigated.T-cell responses to Rv3873, Rv3878 and Rv3879c were quantified by IFN-γ-enzyme-linked-immunospot (ELISpot) in 846 children with recent household tuberculosis exposure and correlated with kinetics of tuberculin skin test (TST) and ESAT-6/CFP-10-ELISpot conversion over six months and clinical outcome over two years.Responses to Rv3873, Rv3878, and Rv3879c were present in 20-25% of contacts at enrolment. Rv3873 and Rv3879c responses were associated with and preceded TST conversion (P=0.02 and P=0.04 respectively), identifying these antigens as early targets of cell-mediated immunity following M. tuberculosis exposure. Responses to Rv3873 were additionally associated with subsequent ESAT-6/CFP-10-ELISpot conversion (P=0.04). Responses to Rv3873 and Rv3878 predicted progression to active disease (adjusted incidence rate ratio [95% CI] 3.06 [1.05,8.95; P=0.04], and 3.32 [1.14,9.71; P=0.03], respectively). Presence of a BCG-vaccination scar was associated with a 67% (P=0.03) relative risk reduction for progression to active tuberculosis.These RD1-derived antigens are early targets of cellular immunity following tuberculosis exposure and T-cells specific for these antigens predict progression to active tuberculosis suggesting diagnostic and prognostic utility
    corecore