154 research outputs found

    RI4 AN ECONOMIC ANALYSIS OF RAPID TESTS AND ANTIVIRAL TREATMENTS FOR INFLUENZA IN CHILDREN

    Get PDF

    Update on avian influenza A (H5N1) virus infection in humans

    Get PDF
    Avian influenza A (H5N1) viruses are entrenched among poultry in parts of Asia and Africa and continue to cause disease with high mortality in humans. This update summarizes recent information including research on the transmission and pathogenesis of the infection and on the current strategies for treatment and prevention. Copyright © 2008 Massachusetts Medical Society. All rights reserved.published_or_final_versio

    Modes of Transmission of Influenza B Virus in Households

    Get PDF
    Introduction:While influenza A and B viruses can be transmitted via respiratory droplets, the importance of small droplet nuclei "aerosols'' in transmission is controversial. Methods and Findings: In Hong Kong and Bangkok, in 2008-11, subjects were recruited from outpatient clinics if they had recent onset of acute respiratory illness and none of their household contacts were ill. Following a positive rapid influenza diagnostic test result, subjects were randomly allocated to one of three household-based interventions: hand hygiene, hand hygiene plus face masks, and a control group. Index cases plus their household contacts were followed for 7-10 days to identify secondary infections by reverse transcription polymerase chain reaction (RT-PCR) testing of respiratory specimens. Index cases with RT-PCR-confirmed influenza B were included in the present analyses. We used a mathematical model to make inferences on the modes of transmission, facilitated by apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We estimated that approximately 37% and 26% of influenza B virus transmission was via the aerosol mode in households in Hong Kong and Bangkok, respectively. In the fitted model, influenza B virus infections were associated with a 56%-72% risk of fever plus cough if infected via aerosol route, and a 23%-31% risk of fever plus cough if infected via the other two modes of transmission. Conclusions: Aerosol transmission may be an important mode of spread of influenza B virus. The point estimates of aerosol transmission were slightly lower for influenza B virus compared to previously published estimates for influenza A virus in both Hong Kong and Bangkok. Caution should be taken in interpreting these findings because of the multiple assumptions inherent in the model, including that there is limited biological evidence to date supporting a difference in the clinical features of influenza B virus infection by different modes.published_or_final_versio

    Performance of an Influenza Rapid Test in Children in a Primary Healthcare Setting in Nicaragua

    Get PDF
    Background: Influenza is major public health threat worldwide, yet the diagnostic accuracy of rapid tests in developing country settings is not well described. Methodology/Principal Findings: To investigate the diagnostic accuracy of the QuickVue Influenza A+B test in a primary care setting in a developing country, we performed a prospective study of diagnostic accuracy of the QuickVue Influenza A+B test in comparison to reverse transcriptase-polymerase chain reaction (RT-PCR) in a primary healthcare setting in children aged 2 to 12 years in Managua, Nicaragua. The sensitivity and specificity of the QuickVue test compared to RT-PCR were 68.5 % (95 % CI 63.4, 73.3) and 98.1 % (95 % CI 96.9, 98.9), respectively, for children with a fever or history of a fever and cough and/or sore throat. Test performance was found to be lower on the first day that symptoms developed in comparison to test performance on days two or three of illness. Conclusions/Significance: Our study found that the QuickVue Influenza A+B test performed as well in a developing countr

    Evaluation of Indirect Fluorescent Antibody Assays Compared to Rapid Influenza Diagnostic Tests for the Detection of Pandemic Influenza A (H1N1) pdm09

    Get PDF
    Performance of indirect fluorescent antibody (IFA) assays and rapid influenza diagnostic tests (RIDT) during the 2009 H1N1 pandemic was evaluated, along with the relative effects of age and illness severity on test accuracy. Clinicians and laboratories submitted specimens on patients with respiratory illness to public health from April to mid October 2009 for polymerase chain reaction (PCR) testing as part of pandemic H1N1 surveillance efforts in Orange County, CA; IFA and RIDT were performed in clinical settings. Sensitivity and specificity for detection of the 2009 pandemic H1N1 strain, now officially named influenza A(H1N1)pdm09, were calculated for 638 specimens. Overall, approximately 30% of IFA tests and RIDTs tested by PCR were falsely negative (sensitivity 71% and 69%, respectively). Sensitivity of RIDT ranged from 45% to 84% depending on severity and age of patients. In hospitalized children, sensitivity of IFA (75%) was similar to RIDT (84%). Specificity of tests performed on hospitalized children was 94% for IFA and 80% for RIDT. Overall sensitivity of RIDT in this study was comparable to previously published studies on pandemic H1N1 influenza and sensitivity of IFA was similar to what has been reported in children for seasonal influenza. Both diagnostic tests produced a high number of false negatives and should not be used to rule out influenza infection

    Do pediatricians manage influenza differently than internists?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about how pediatricians or internists manage influenza symptoms. Recent guidelines on antiviral prescribing by the Centers for Disease Control and Prevention (CDC) make almost no distinction between adults and children. Our objective was to describe how pediatricians in two large academic medical institutions manage influenza and compare them to internists.</p> <p>Methods</p> <p>At the end of the 2003–4 influenza season, we conducted a cross sectional on-line survey of physician knowledge, attitudes and practices regarding rapid diagnostic testing and use of antiviral therapy for influenza at two large academic medical centers, one in Massachusetts and the other in Texas. We collected data on self-reported demographics, test use, prescribing practices, and beliefs about influenza and anti-influenza drugs.</p> <p>Results</p> <p>A total of 107 pediatricians and 103 internists completed the survey (response rate of 53%). Compared to internists, pediatricians were more likely to perform rapid testing (74% vs. 47%, p < 0.0001), to use amantadine (88% vs. 48%, p < 0.0001), to restrict their prescribing to high-risk patients (86% vs. 53%, p < 0.0001), and to believe that antiviral therapy could decrease mortality (38% vs. 22%, p = 0.01). Other beliefs about antiviral therapy did not differ statistically between the specialties. Internists were more likely to be unfamiliar with rapid testing or not to have it available.</p> <p>Conclusion</p> <p>Pediatricians and internists manage influenza differently. Evidence-based guidelines addressing the specific concerns of each group would be helpful.</p

    A Comparison of Clinical and Epidemiological Characteristics of Fatal Human Infections with H5N1 and Human Influenza Viruses in Thailand, 2004–2006

    Get PDF
    BACKGROUND: The National Avian Influenza Surveillance (NAIS) system detected human H5N1 cases in Thailand from 2004-2006. Using NAIS data, we identified risk factors for death among H5N1 cases and described differences between H5N1 and human (seasonal) influenza cases. METHODS AND FINDINGS: NAIS identified 11,641 suspect H5N1 cases (e.g. persons with fever and respiratory symptoms or pneumonia, and exposure to sick or dead poultry). All suspect H5N1 cases were tested with polymerase chain reaction (PCR) assays for influenza A(H5N1) and human influenza viruses. NAIS detected 25 H5N1 and 2074 human influenza cases; 17 (68%) and 22 (1%) were fatal, respectively. We collected detailed information from medical records on all H5N1 cases, all fatal human influenza cases, and a sampled subset of 230 hospitalized non-fatal human influenza cases drawn from provinces with ≥1 H5N1 case or human influenza fatality. Fatal versus non-fatal H5N1 cases were more likely to present with low white blood cell (p = 0.05), lymphocyte (p<0.02), and platelet counts (p<0.01); have elevated liver enzymes (p = 0.05); and progress to circulatory (p<0.001) and respiratory failure (p<0.001). There were no differences in age, medical conditions, or antiviral treatment between fatal and non-fatal H5N1 cases. Compared to a sample of human influenza cases, all H5N1 cases had direct exposure to sick or dead birds (60% vs. 100%, p<0.05). Fatal H5N1 and fatal human influenza cases were similar clinically except that fatal H5N1 cases more commonly: had fever (p<0.001), vomiting (p<0.01), low white blood cell counts (p<0.01), received oseltamivir (71% vs. 23%, p<.001), but less often had ≥1 chronic medical conditions (p<0.001). CONCLUSIONS: In the absence of diagnostic testing during an influenza A(H5N1) epizootic, a few epidemiologic, clinical, and laboratory findings might provide clues to help target H5N1 control efforts. Severe human influenza and H5N1 cases were clinically similar, and both would benefit from early antiviral treatment

    Preliminary Findings of a Randomized Trial of Non-Pharmaceutical Interventions to Prevent Influenza Transmission in Households

    Get PDF
    Background: There are sparse data on whether non-pharmaceutical interventions can reduce the spread of influenza. We implemented a study of the feasibility and efficacy of face masks and hand hygiene to reduce influenza transmission among Hong Kong household members. Methodology/Principal Findings: We conducted a cluster randomized controlled trial of households (composed of at least 3 members) where an index subject presented with influenza-like-illness of <48 hours duration. After influenza was confirmed in an index case by the QuickVue Influenza A+B rapid test, the household of the index subject was randomised to 1) control or 2) surgical face masks or 3) hand hygiene. Households were visited within 36 hours, and 3, 6 and 9 days later. Nose and throat swabs were collected from index subjects and all household contact at each home visit and tested by viral culture. The primary outcome measure was laboratory culture confirmed influenza in a household contact; the secondary outcome was clinically diagnosed influenza (by self-reported symptoms). We randomized 198 households and completed follow up home visits in 128; the index cases in 122 of those households had laboratory-confirmed influenza. There were 21 household contacts with laboratory confirmed influenza corresponding to a secondary attack ratio of 6%. Clinical secondary attack ratios varied from 5% to 18% depending on case definitions. The laboratory-based or clinical secondary attack ratios old not significantly differ across the intervention arms. Adherence to interventions was variable. Conclusions/Significance: The secondary attack ratios were lower than anticipated, and lower than reported in other countries, perhaps due to differing patterns of susceptibility, lack of significant antigenic drift in circulating influenza virus strains recently, and/or issues related to the symptomatic recruitment design. Lessons learn from this pilot have informed changes for the main study in 2008.published_or_final_versio
    • …
    corecore