13 research outputs found

    Single Exposure of Human Oral Mucosa Fibroblasts to Ultraviolet B Radiation Reduces Proliferation and Induces COX-2 Expression and Activation

    Get PDF
    The lip vermillion constitutes a transition tissue, between oral mucosa and skin, where oral mucosal cells from epithelial and connective tissue compartments are exposed to ultraviolet (UV) sunlight. Fibroblasts are abundant resident cells of the connective tissue which are key regulators of extracellular matrix composition, as well as, epithelial and endothelial cell function. UVB light, an inherent component of sunlight, causes several alterations in skin fibroblasts, including premature senescence and increased cyclooxygenase (COX)-2 expression. To assess if UVB irradiation had similar effects on fibroblasts derived from human oral mucosa (HOM), primary cultures of HOM fibroblasts were irradiated with a single dose of 30 or 60 mJ/cm²of UVB light or sham-irradiated. Fibroblast proliferation was assessed from 3 to 48 hrs after UVB-irradiation utilizing [³H]-thymidine incorporation and MTT assays. In addition, COX-2 mRNA expression was detected by RT-PCR, and PGE2 production was assessed using enzyme immunoassay from 0.5 to 24 hrs after UVB-irradiation. The results showed a significant decrease in proliferation of UVB-irradiated HOM fibroblasts as compared to controls as measured by both [³H]-thymidine incorporation and MTT assays (p<0.001). HOM fibroblasts had increased COX-2 mRNA expression at 0.5 and 12 hrs after irradiation, and PGE2 production was elevated at 12 and 24 hrs post-irradiation as compared to controls (p<0.05). The results showed an inhibitory effect of a single dose of UVB irradiation on HOM fibroblast proliferation with an increase in COX-2 expression and activation. Therefore, photodamaged fibroblasts may play and important role in the pathogenesis of UV-induced lesions of the lip

    The chemokine receptor D6 limits the inflammatory response in vivo

    No full text
    How the inflammatory response is initiated has been well defined but relatively little is known about how such responses are resolved. Here we show that the D6 chemokine receptor is involved in the post-inflammatory clearance of beta-chemokines from cutaneous sites. After induction of inflammation by phorbol esters, wild-type mice showed a transient inflammatory response. However, in D6-deficient mice, an excess concentration of residual chemokines caused a notable inflammatory pathology with similarities to human psoriasis. These results suggest that D6 is involved in the resolution of the cutaneous inflammatory response
    corecore