43 research outputs found
Bright single-photon sources in bottom-up tailored nanowires
The ability to achieve near-unity light extraction efficiency is necessary
for a truly deterministic single photon source. The most promising method to
reach such high efficiencies is based on embedding single photon emitters in
tapered photonic waveguides defined by top-down etching techniques. However,
light extraction efficiencies in current top-down approaches are limited by
fabrication imperfections and etching induced defects. The efficiency is
further tempered by randomly positioned off-axis quantum emitters. Here, we
present perfectly positioned single quantum dots on the axis of a tailored
nanowire waveguide using bottom-up growth. In comparison to quantum dots in
nanowires without waveguide, we demonstrate a 24-fold enhancement in the single
photon flux, corresponding to a light extraction efficiency of 42 %. Such high
efficiencies in one-dimensional nanowires are promising to transfer quantum
information over large distances between remote stationary qubits using flying
qubits within the same nanowire p-n junction.Comment: 19 pages, 6 figure
Composite-pulse magnetometry with a solid-state quantum sensor
The sensitivity of quantum magnetometers is challenged by control errors and,
especially in the solid-state, by their short coherence times. Refocusing
techniques can overcome these limitations and improve the sensitivity to
periodic fields, but they come at the cost of reduced bandwidth and cannot be
applied to sense static (DC) or aperiodic fields. Here we experimentally
demonstrate that continuous driving of the sensor spin by a composite pulse
known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating
both driving power imperfections and decoherence. A suitable choice of RE
parameters compensates for different scenarios of noise strength and origin.
The method can be applied to nanoscale sensing in variable environments or to
realize noise spectroscopy. In a room-temperature implementation based on a
single electronic spin in diamond, composite-pulse magnetometry provides a
tunable trade-off between sensitivities in the microT/sqrt(Hz) range,
comparable to those obtained with Ramsey spectroscopy, and coherence times
approaching T1
Improving the performance of bright quantum dot single photon sources using amplitude modulation
Single epitaxially-grown semiconductor quantum dots have great potential as
single photon sources for photonic quantum technologies, though in practice
devices often exhibit non-ideal behavior. Here, we demonstrate that amplitude
modulation can improve the performance of quantum-dot-based sources. Starting
with a bright source consisting of a single quantum dot in a fiber-coupled
microdisk cavity, we use synchronized amplitude modulation to temporally filter
the emitted light. We observe that the single photon purity, temporal overlap
between successive emission events, and indistinguishability can be greatly
improved with this technique. As this method can be applied to any triggered
single photon source, independent of geometry and after device fabrication, it
is a flexible approach to improve the performance of solid-state systems, which
often suffer from excess dephasing and multi-photon background emission
A robust, scanning quantum system for nanoscale sensing and imaging
Controllable atomic-scale quantum systems hold great potential as sensitive
tools for nanoscale imaging and metrology. Possible applications range from
nanoscale electric and magnetic field sensing to single photon microscopy,
quantum information processing, and bioimaging. At the heart of such schemes is
the ability to scan and accurately position a robust sensor within a few
nanometers of a sample of interest, while preserving the sensor's quantum
coherence and readout fidelity. These combined requirements remain a challenge
for all existing approaches that rely on direct grafting of individual solid
state quantum systems or single molecules onto scanning-probe tips. Here, we
demonstrate the fabrication and room temperature operation of a robust and
isolated atomic-scale quantum sensor for scanning probe microscopy.
Specifically, we employ a high-purity, single-crystalline diamond nanopillar
probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the
versatility and performance of our scanning NV sensor by conducting
quantitative nanoscale magnetic field imaging and near-field single-photon
fluorescence quenching microscopy. In both cases, we obtain imaging resolution
in the range of 20 nm and sensitivity unprecedented in scanning quantum probe
microscopy
Sensing electric fields using single diamond spins
The ability to sensitively detect charges under ambient conditions would be a
fascinating new tool benefitting a wide range of researchers across
disciplines. However, most current techniques are limited to low-temperature
methods like single-electron transistors (SET), single-electron electrostatic
force microscopy and scanning tunnelling microscopy. Here we open up a new
quantum metrology technique demonstrating precision electric field measurement
using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC
electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This
corresponds to the electric field produced by a single elementary charge
located at a distance of ~ 150 nm from our spin sensor with averaging for one
second. By careful analysis of the electronic structure of the defect centre,
we show how an applied magnetic field influences the electric field sensing
properties. By this we demonstrate that diamond defect centre spins can be
switched between electric and magnetic field sensing modes and identify
suitable parameter ranges for both detector schemes. By combining magnetic and
electric field sensitivity, nanoscale detection and ambient operation our study
opens up new frontiers in imaging and sensing applications ranging from
material science to bioimaging
Enhanced Single Photon Emission from a Diamond-Silver Aperture
We have developed a scalable method for coupling single color centers in
diamond to plasmonic resonators and demonstrated Purcell enhancement of the
single photon emission rate of nitrogen-vacancy (NV) centers. Our structures
consist of single nitrogen-vacancy (NV) center-containing diamond nanoposts
embedded in a thin silver film. We have utilized the strong plasmon resonances
in the diamond-silver apertures to enhance the spontaneous emission of the
enclosed dipole. The devices were realized by a combination of ion implantation
and top-down nanofabrication techniques, which have enabled deterministic
coupling between single NV centers and the plasmonic modes for multiple devices
in parallel. The plasmon-enhanced NV centers exhibited over six-fold
improvements in spontaneous emission rate in comparison to bare nanoposts and
up to a factor of 3.6 in radiative lifetime reduction over bulk samples, with
comparable increases in photon counts. The hybrid diamond-plasmon system
presented here could provide a stable platform for the implementation of
diamond-based quantum information processing and magnetometry schemes.Comment: 16 pages, 4 figure
Nanoscale magnetic imaging of a single electron spin under ambient conditions
The detection of ensembles of spins under ambient conditions has revolutionized the biological, chemical and physical sciences through magnetic resonance imaging and nuclear magnetic resonance . Pushing sensing capabilities to the individual-spin level would enable unprecedented applications such as single-molecule structural imaging; however, the weak magnetic fields from single spins are undetectable by conventional far-field resonance techniques . In recent years, there has been a considerable effort to develop nanoscale scanning magnetometers , which are able to measure fewer spins by bringing the sensor in close proximity to its target. The most sensitive of these magnetometers generally require low temperatures for operation, but the ability to measure under ambient conditions (standard temperature and pressure) is critical for many imaging applications, particularly in biological systems. Here we demonstrate detection and nanoscale imaging of the magnetic field from an initialized single electron spin under ambient conditions using a scanning nitrogen-vacancy magnetometer. Real-space, quantitative magnetic-field images are obtained by deterministically scanning our nitrogen-vacancy magnetometer 50 nm above a target electron spin, while measuring the local magnetic field using dynamically decoupled magnetometry protocols. We discuss how this single-spin detection enables the study of a variety of room-temperature phenomena in condensed-matter physics with an unprecedented combination of spatial resolution and spin sensitivity
On-chip generation of high-dimensional entangled quantum states and their coherent control
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states7. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2)8, 9, 10, 11. Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode
One- and two-dimensional photonic crystal micro-cavities in single crystal diamond
The development of solid-state photonic quantum technologies is of great
interest for fundamental studies of light-matter interactions and quantum
information science. Diamond has turned out to be an attractive material for
integrated quantum information processing due to the extraordinary properties
of its colour centres enabling e.g. bright single photon emission and spin
quantum bits. To control emitted photons and to interconnect distant quantum
bits, micro-cavities directly fabricated in the diamond material are desired.
However, the production of photonic devices in high-quality diamond has been a
challenge so far. Here we present a method to fabricate one- and
two-dimensional photonic crystal micro-cavities in single-crystal diamond,
yielding quality factors up to 700. Using a post-processing etching technique,
we tune the cavity modes into resonance with the zero phonon line of an
ensemble of silicon-vacancy centres and measure an intensity enhancement by a
factor of 2.8. The controlled coupling to small mode volume photonic crystal
cavities paves the way to larger scale photonic quantum devices based on
single-crystal diamond
Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region