15 research outputs found

    Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown.

    Get PDF
    Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species

    The role of the freshwater shrimp atyaephyra desmarestii in leaf litter breakdown in streams

    Get PDF
    This version does not correspond to the published one. To access the final version go to: http://www.springerlink.com/content/a31518u452m03286/In aquatic ecosystems, microorganisms and invertebrates provide critical links between plant detritus and higher trophic levels. Atyaephyra desmarestii is an omnivorous decapod that inhabits freshwaters and exhibits high tolerance to temperature oscillations and high ability to colonize new habitats. Although A. desmarestii is able to ingest a variety of foods, few studies have been conducted to elucidate the role of this freshwater shrimp on detritus breakdown in streams. In this study, A. desmarestii was allowed to feed on conditioned or unconditioned alder and eucalyptus leaves in microcosms with or without access to its fecal pellets. At the end of the experiment, total body length of the animals was measured, and the remaining leaves and fecal pellets were used for dry mass quantification and assessment of bacterial and fungal diversity by denaturing gradient gel electrophoresis (DGGE). Cluster analyses of DGGE fingerprints indicated that the major differences in microbial communities on leaves were between leaf types, while on fecal pellets were between conditioned and unconditioned leaves. However, the consumption rate by the shrimp did not differ between leaf types, and was significantly higher on leaves conditioned by microorganisms and in treatments without access to feces. In treatments without access to feces, the production of feces and fine particulate organic matter was also significantly higher for conditioned leaves. Overall, our results support the feeding plasticity of A. desmarestii and its potential role in plant litter breakdown in streams. This might have implications for maintaining stream ecosystem functioning, particularly if more vulnerable shredders decline.The Portuguese Foundation for the Science and Technology supported S. Duarte (SFRH/BPD/47574/2008

    Nutrient enrichment of a heterotrophic stream alters leaf litter nutritional quality and shredder physiological condition via the microbial pathway

    No full text
    Streams receiving agricultural runoff are typically enriched with nutrients, which variously impact stream communities. We examined the effects of phosphate and nitrate enrichment on leaf litter breakdown, microbial biomass and the nutrition of an invertebrate shredder to determine how nutrients are transferred through the stream detrital food web. Using artificial streams, individuals of Anisocentropus kirramus (Trichoptera: Calamoceratidae) were fed leaves of Apodytes brachystylus (Icacinaceae) under different nutrient regimes. We measured the amount of leaf material consumed or decomposed and the microbial biomass colonising the leaves. The dry mass, and protein, lipid and carbohydrate composition of A. kirramus larvae were determined after 28-day feeding on the leaves. Supplements of phosphorus, but not nitrogen, enhanced leaf breakdown, microbial growth and growth of larvae. Microbial biomass and dry mass of larvae increased with nutrient enrichment and they were significantly correlated. Thus, the phosphorus supplement was transmitted through the detrital food web via the microbial pathway, resulting in higher nutritional quality of leaves and enhanced physiological condition of the shredder. Understanding such subtle relationships is important in determining the impacts of anthropogenic contaminants on freshwater ecosystems
    corecore