18 research outputs found
Retinoid and carotenoid status in serum and liver among patients at high-risk for liver cancer
BACKGROUND: Approximately 2.7 million Americans are chronically infected with hepatitis C virus (HCV). HCV patients with cirrhosis form the largest group of persons at high risk for hepatocellular carcinoma (HCC). Increased oxidative stress is regarded as a major mechanism of HCV-related liver disease progression. Deficiencies in retinoid and carotenoid antioxidants may represent a major modifiable risk factor for disease progression. This study aims to identify key predictors of serum antioxidant levels in patients with HCV, to examine the relationship between retinoid/carotenoid concentrations in serum and hepatic tissue, to quantify the association between systemic measures of oxidative stress and antioxidant status, and to examine the relationship between retinoids and stellate cell activation. METHODS: Patients undergoing liver biopsy (n = 69) provided fasting blood, fresh tissue, urine and completed a diet history questionnaire. Serum and questionnaire data from healthy volunteers (n = 11), normal liver tissue from public repositories and patients without liver disease (n = 11) were also collected. Urinary isoprostanes, serum and tissue retinoid concentrations were obtained by UHPLC-MS-MS. Immunohistochemistry for αSMA was performed on FFPE sections and subsequently quantified via digital image analysis. Associations between urinary isoprostanes, αSMA levels, and retinoids were assessed using Spearman correlation coefficients and non-parametric tests were utilized to test differences among disease severity groups. RESULTS: There was a significant inverse association between serum retinol, lycopene, and RBP4 concentrations with fibrosis stage. Serum β-carotene and lycopene were strongly associated with their respective tissue concentrations. There was a weak downward trend of tissue retinyl palmitate with increasing fibrosis stage. Tissue retinyl palmitate was inversely and significantly correlated with hepatic αSMA expression, a marker for hepatic stellate cell activation (r = −0.31, P < 0.02). Urinary isoprostanes levels were inversely correlated with serum retinol, β-carotene, and RBP4. CONCLUSIONS: A decrease in serum retinol, β-carotene, and RBP4 is associated with early stage HCV. Retinoid and carotenoid levels decline as disease progresses, and our data suggest that this decline occurs early in the disease process, even before fibrosis is apparent. Measures of oxidative stress are associated with fibrosis stage and concurrent antioxidant depletion. Vitamin A loss is accompanied by stellate cell activation in hepatic tissue. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12876-016-0432-5) contains supplementary material, which is available to authorized users
Viral persistence, liver disease, and host response in a hepatitis C–like virus rat model
The lack of a relevant, tractable, and immunocompetent animal model for hepatitis C virus (HCV) has severely impeded investigations of viral persistence, immunity, and pathogenesis. In the absence of immunocompetent models with robust HCV infection, homolog hepaciviruses in their natural host could potentially provide useful surrogate models. We isolated a rodent hepacivirus from wild rats (Rattus norvegicus), RHV‐rn1; acquired the complete viral genome sequence; and developed an infectious reverse genetics system. RHV‐rn1 resembles HCV in genomic features including the pattern of polyprotein cleavage sites and secondary structures in the viral 5′ and 3′ untranslated regions. We used site‐directed and random mutagenesis to determine that only the first of the two microRNA‐122 seed sites in the viral 5′ untranslated region is required for viral replication and persistence in rats. Next, we used the clone‐derived virus progeny to infect several inbred and outbred rat strains. Our results determined that RHV‐rn1 possesses several HCV‐defining hallmarks: hepatotropism, propensity to persist, and the ability to induce gradual liver damage. Histological examination of liver samples revealed the presence of lymphoid aggregates, parenchymal inflammation, and macrovesicular and microvesicular steatosis in chronically infected rats. Gene expression analysis demonstrated that the intrahepatic response during RHV‐rn1 infection in rats mirrors that of HCV infection, including persistent activation of interferon signaling pathways. Finally, we determined that the backbone drug of HCV direct‐acting antiviral therapy, sofosbuvir, effectively suppresses chronic RHV‐rn1 infection in rats. Conclusion: We developed RHV‐rn1‐infected rats as a fully immunocompetent and informative surrogate model to delineate the mechanisms of HCV‐related viral persistence, immunity, and pathogenesis. (Hepatology 2018)
High density Huh7.5 cell hollow fiber bioreactor culture for high-yield production of hepatitis C virus and studies of antivirals
Abstract Chronic hepatitis C virus (HCV) infection poses a serious global public health burden. Despite the recent development of effective treatments there is a large unmet need for a prophylactic vaccine. Further, antiviral resistance might compromise treatment efficiency in the future. HCV cell culture systems are typically based on Huh7 and derived hepatoma cell lines cultured in monolayers. However, efficient high cell density culture systems for high-yield HCV production and studies of antivirals are lacking. We established a system based on Huh7.5 cells cultured in a hollow fiber bioreactor in the presence or absence of bovine serum. Using an adapted chimeric genotype 5a virus, we achieved peak HCV infectivity and RNA titers of 7.6 log10 FFU/mL and 10.4 log10 IU/mL, respectively. Bioreactor derived HCV showed high genetic stability, as well as buoyant density, sensitivity to neutralizing antibodies AR3A and AR4A, and dependency on HCV co-receptors CD81 and SR-BI comparable to that of HCV produced in monolayer cell cultures. Using the bioreactor platform, treatment with the NS5A inhibitor daclatasvir resulted in HCV escape mediated by the NS5A resistance substitution Y93H. In conclusion, we established an efficient high cell density HCV culture system with implications for studies of antivirals and vaccine development
miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence
Pathogenesis, MicroRNA‐122 Gene‐Regulation, and Protective Immune Responses After Acute Equine Hepacivirus Infection
BACKGROUND AND AIMS: Equine hepacivirus (EqHV) is phylogenetically the closest relative of HCV and shares genome organization, hepatotropism, transient or persistent infection outcome, and the ability to cause hepatitis. Thus, EqHV studies are important to understand equine liver disease and further as an outbred surrogate animal model for HCV pathogenesis and protective immune responses. Here, we aimed to characterize the course of EqHV infection and associated protective immune responses. APPROACH AND RESULTS: Seven horses were experimentally inoculated with EqHV, monitored for 6 months, and rechallenged with the same and, subsequently, a heterologous EqHV. Clearance was the primary outcome (6 of 7) and was associated with subclinical hepatitis characterized by lymphocytic infiltrate and individual hepatocyte necrosis. Seroconversion was delayed and antibody titers waned slowly. Clearance of primary infection conferred nonsterilizing immunity, resulting in shortened duration of viremia after rechallenge. Peripheral blood mononuclear cell responses in horses were minimal, although EqHV‐specific T cells were identified. Additionally, an interferon‐stimulated gene signature was detected in the liver during EqHV infection, similar to acute HCV in humans. EqHV, as HCV, is stimulated by direct binding of the liver‐specific microRNA (miR), miR‐122. Interestingly, we found that EqHV infection sequesters enough miR‐122 to functionally affect gene regulation in the liver. This RNA‐based mechanism thus could have consequences for pathology. CONCLUSIONS: EqHV infection in horses typically has an acute resolving course, and the protective immune response lasts for at least a year and broadly attenuates subsequent infections. This could have important implications to achieve the primary goal of an HCV vaccine; to prevent chronicity while accepting acute resolving infection after virus exposure
FR171456 is a specific inhibitor of mammalian NSDHL and yeast Erg26p
FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae—Erg26p, Homo sapiens—NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound
