1,324 research outputs found
Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer's disease: a focused review on recent advances
Discovery and development of clinically useful biomarkers for Alzheimer’s disease (AD) and related dementias have been the focus of recent research efforts. While cerebrospinal fluid and positron emission tomography or MRI-based neuroimaging markers have made the in vivo detection of AD pathology and its consequences possible, the high cost and invasiveness have limited their widespread use in the clinical setting. On the other hand, advances in potentially more accessible blood-based biomarkers had been impeded by lack of sensitivity in detecting changes in markers of the hallmarks of AD, including amyloid-β (Aβ) peptides and phosphorylated tau (P-tau). More recently, however, emerging technologies with superior sensitivity and specificity for measuring Aβ and P-tau have reported high concordances with AD severity. In this focused review, we describe several emerging technologies, including immunoprecipitation-mass spectrometry (IP-MS), single molecule array and Meso Scale Discovery immunoassay platforms, and appraise the current literature arising from their use to identify plaques, tangles and other AD-associated pathology. While there is potential clinical utility in adopting these technologies, we also highlight the further studies needed to establish Aβ and P-tau as blood-based biomarkers for AD, including validation with existing large sample sets, new independent cohorts from diverse backgrounds as well as population-based longitudinal studies. In conclusion, the availability of sensitive and reliable measurements of Aβ peptides and P-tau species in blood holds promise for the diagnosis, prognosis and outcome assessments in clinical trials for AD
Seeing two faces together: preference formation in humans and rhesus macaques
Humans, great apes and old world monkeys show selective attention to faces depending on conspecificity, familiarity, and social status supporting the view that primates share similar face processing mechanisms. Although many studies have been done on face scanning strategy in monkeys and humans, the mechanisms influencing viewing preference have received little attention. To determine how face categories influence viewing preference in humans and rhesus macaques (Macaca mulatta), we performed two eye-tracking experiments using a visual preference task whereby pairs of faces from different species were presented simultaneously. The results indicated that viewing time was significantly influenced by the pairing of the face categories. Humans showed a strong bias towards an own-race face in an Asian–Caucasian condition. Rhesus macaques directed more attention towards non-human primate faces when they were paired with human faces, regardless of the species. When rhesus faces were paired with faces from Barbary macaques
(Macaca sylvanus) or chimpanzees (Pan troglodytes), the novel species’ faces attracted more attention. These results
indicate that monkeys’ viewing preferences, as assessed by a visual preference task, are modulated by several factors,
species and dominance being the most influential
EGFR-specific T cell frequencies correlate with EGFR expression in head and neck squamous cell carcinoma
Background\ud
In head and neck squamous cell carcinoma (HNSCC), expression levels of the epidermal growth factor receptor (EGFR) correlate with poor prognosis and decreased survival rates. As the mechanisms responsible for cellular immune response to EGFR in vivo remain unclear, the frequency and function of EGFR-specific cytotoxic T cells (CTL) was determined in HNSCC patients.\ud
\ud
Methods\ud
The frequency of CTL specific for the HLA-A2.1-restricted EGFR-derived YLN peptide (YLNTVQPTCV) and KLF peptide (KLFGTSGQKT) was determined in 16 HLA-A2.1+ HNSCC patients and 16 healthy HLA-A2.1+ individuals (NC) by multicolor flow cytometry. Patients' results were correlated to EGFR expression obtained by immunohistochemistry in corresponding tumor sections. Proliferation and anti-tumor activity of peptide-specific CTL was demonstrated by in vitro stimulation with dendritic cells pulsed with the peptides.\ud
\ud
Results\ud
Frequency of EGFR-specific CTL correlated significantly with EGFR expression in tumor sections (p = 0.02, r2 = 0.6). Patients with elevated EGFR scores (> 7) had a significantly higher frequency of EGFR-specific CTL than NC and patients with low EGFR scores (< 7). EGFR-specific CTL from cancer patients were expanded ex vivo and produced IFN-γ upon recognition of EGFR+ target cells.\ud
\ud
Conclusion\ud
EGFR expressed on HNSCC cells induces a specific immune response in vivo. Strategies for expansion of EGFR-specific CTL may be important for future immunotherapy of HNSCC patients
Effect of propofol and etomidate on normoxic and chronically hypoxic pulmonary artery
BACKGROUND: Chronic alveolar hypoxia results in sustained arterial constriction, and increase in pulmonary vascular resistance leading to pulmonary artery hypertension (PAHT). The aim of this study was to investigate the effect of propofol and etomidate on pulmonary artery (PA) reactivity in chronically hypoxic (CH) rats, a model of pulmonary arterial hypertension (PAHT), in normoxic animals, and human PA. METHODS: CH rats were maintained 14 days at 380 mmHg pressure in a hypobaric chamber. Human tissue was retrieved from histological lung pieces from patients undergoing resection for carcinoma. Cumulative concentrations of anaesthetics were tested on isolated vascular rings precontracted with phenylephrine (PHE) or 100 mM KCl. Statistical comparisons were done by ANOVA, followed, when needed, by Student t tests with Bonferroni correction as post-hoc tests. RESULTS: In normoxic rat PA, maximal relaxation (R(max)) induced by etomidate and propofol was 101.3 ± 0.8% and 94.0 ± 2.3%, respectively, in KCl-precontracted rings, and 63.3 ± 9.7% and 46.1 ± 9.1%, respectively, in PHE-precontracted rings (n = 7). In KCl-precontracted human PA, R(max )was 84.7 ± 8.6 % and 66.5 ± 11.8%, for etomidate and propofol, respectively, and 154.2 ± 22.4 % and 51.6 ± 15.1 %, respectively, in PHE-precontracted human PA (n = 7). In CH rat PA, the relaxant effect of both anaesthetics was increased in PHE-precontracted and, for etomidate only, in KCl-precontracted PA. In aorta, CH induced no change in the relaxant effect of anaesthetics. CONCLUSION: Propofol and etomidate have relaxant properties in PA from human and normoxic rat. The relaxant effect is specifically accentuated in PA from CH rat, mainly via an effect on the pharmacomechanical coupling. Etomidate appears to be more efficient than propofol at identical concentration, but, taking into account clinical concentrations, etomidate is less potent than propofol, which effect was in the range of clinical doses. Although these findings provide experimental support for the preferential use of etomidate for haemodynamic stability in patients suffering from PAHT, the clinical relevance of the observations requires further investigation
Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.
Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer
Cosmic rays and molecular clouds
This paper deals with the cosmic-ray penetration into molecular clouds and
with the related gamma--ray emission. High energy cosmic rays interact with the
dense gas and produce neutral pions which in turn decay into two gamma rays.
This makes molecular clouds potential sources of gamma rays, especially if they
are located in the vicinity of a powerful accelerator that injects cosmic rays
in the interstellar medium. The amplitude and duration in time of the
cosmic--ray overdensity around a given source depend on how quickly cosmic rays
diffuse in the turbulent galactic magnetic field. For these reasons, gamma-ray
observations of molecular clouds can be used both to locate the sources of
cosmic rays and to constrain the properties of cosmic-ray diffusion in the
Galaxy.Comment: To appear in the proceedings of the San Cugat Forum on Astrophysics
2012, 27 pages, 10 figure
American ginseng suppresses Western diet-promoted tumorigenesis in model of inflammation-associated colon cancer: role of EGFR
<p>Abstract</p> <p>Background</p> <p>Western diets increase colon cancer risk. Epidemiological evidence and experimental studies suggest that ginseng can inhibit colon cancer development. In this study we asked if ginseng could inhibit Western diet (20% fat) promoted colonic tumorigenesis and if compound K, a microbial metabolite of ginseng could suppress colon cancer xenograft growth.</p> <p>Methods</p> <p>Mice were initiated with azoxymethane (AOM) and, two weeks later fed a Western diet (WD, 20% fat) alone, or WD supplemented with 250-ppm ginseng. After 1 wk, mice received 2.5% dextran sulfate sodium (DSS) for 5 days and were sacrificed 12 wks after AOM. Tumors were harvested and cell proliferation measured by Ki67 staining and apoptosis by TUNEL assay. Levels of EGF-related signaling molecules and apoptosis regulators were determined by Western blotting. Anti-tumor effects of intraperitoneal compound K were examined using a tumor xenograft model and compound K absorption measured following oral ginseng gavage by UPLC-mass spectrometry. Effects of dietary ginseng on microbial diversity were measured by analysis of bacterial 16S rRNA.</p> <p>Results</p> <p>Ginseng significantly inhibited colonic inflammation and tumorigenesis and concomitantly reduced proliferation and increased apoptosis. The EGFR cascade was up-regulated in colonic tumors and ginseng significantly reduced EGFR and ErbB2 activation and Cox-2 expression. Dietary ginseng altered colonic microbial diversity, and bacterial suppression with metronidazole reduced serum compound K following ginseng gavage. Furthermore, compound K significantly inhibited tumor xenograft growth.</p> <p>Conclusions</p> <p>Ginseng inhibited colonic inflammation and tumorigenesis promoted by Western diet. We speculate that the ginseng metabolite compound K contributes to the chemopreventive effects of this agent in colonic tumorigenesis.</p
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Synthesis and Characterization of ZnO Nanorods and Nanodisks from Zinc Chloride Aqueous Solution
ZnO nanorods and nanodisks were synthesized by solution process using zinc chloride as starting material. The morphology of ZnO crystal changed greatly depending on the concentrations of Zn2+ion and ethylene glycohol (EG) additive in the solution. The effect of thermal treatment on the morphology was investigated. Photocatalytic activities of plate-like Zn5(OH)8Cl2 · H2O and rod-like ZnO were characterized. About 18% of 1 ppm NO could be continuously removed by ZnO particles under UV light irradiation
- …