201 research outputs found

    Incremental dimension reduction of tensors with random index

    Get PDF
    We present an incremental, scalable and efficient dimension reduction technique for tensors that is based on sparse random linear coding. Data is stored in a compactified representation with fixed size, which makes memory requirements low and predictable. Component encoding and decoding are performed on-line without computationally expensive re-analysis of the data set. The range of tensor indices can be extended dynamically without modifying the component representation. This idea originates from a mathematical model of semantic memory and a method known as random indexing in natural language processing. We generalize the random-indexing algorithm to tensors and present signal-to-noise-ratio simulations for representations of vectors and matrices. We present also a mathematical analysis of the approximate orthogonality of high-dimensional ternary vectors, which is a property that underpins this and other similar random-coding approaches to dimension reduction. To further demonstrate the properties of random indexing we present results of a synonym identification task. The method presented here has some similarities with random projection and Tucker decomposition, but it performs well at high dimensionality only (n>10^3). Random indexing is useful for a range of complex practical problems, e.g., in natural language processing, data mining, pattern recognition, event detection, graph searching and search engines. Prototype software is provided. It supports encoding and decoding of tensors of order >= 1 in a unified framework, i.e., vectors, matrices and higher order tensors.Comment: 36 pages, 9 figure

    Enkephalon - technological platform to support the diagnosis of alzheimer’s disease through the analysis of resonance images using data mining techniques

    Get PDF
    Dementia can be considered as a decrease in the cognitive function of the person. The main diseases that appear are Alzheimer and vascular dementia. Today, 47 million people live with dementia around the world. The estimated total cost of dementia worldwide is US $ 818 billion, and it will become a trilliondollar disease by 2019 The vast majority of people with dementia not received a diagnosis, so they are unable to access care and treatment. In Colombia, two out of every five people presented a mental disorder at some point in their lives and 90% of these have not accessed a health service. Here it´s proposed a technological platform so early detection of Alzheimer. This tool complements and validates the diagnosis made by the health professional, based on the application of Machine Learning techniques for the analysis of a dataset, constructed from magnetic resonance imaging, neuropsychological test and the result of a radiological test. A comparative analysis of quality metrics was made, evaluating the performance of different classifier methods: Random subspace, Decorate, BFTree, LMT, Ordinal class classifier, ADTree and Random forest. This allowed us to identify the technique with the highest prediction rate, that was implemented in ENKEPHALON platform

    Topological Surface States Protected From Backscattering by Chiral Spin Texture

    Get PDF
    Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated by strong spin orbit coupling. These novel materials are distinguished from ordinary insulators by the presence of gapless metallic boundary states, akin to the chiral edge modes in quantum Hall systems, but with unconventional spin textures. Recently, experiments and theoretical efforts have provided strong evidence for both two- and three-dimensional topological insulators and their novel edge and surface states in semiconductor quantum well structures and several Bi-based compounds. A key characteristic of these spin-textured boundary states is their insensitivity to spin-independent scattering, which protects them from backscattering and localization. These chiral states are potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing. Here we use a scanning tunneling microscope (STM) to visualize the gapless surface states of the three-dimensional topological insulator BiSb and to examine their scattering behavior from disorder caused by random alloying in this compound. Combining STM and angle-resolved photoemission spectroscopy, we show that despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observation of spin-selective scattering demonstrates that the chiral nature of these states protects the spin of the carriers; they therefore have the potential to be used for coherent spin transport in spintronic devices.Comment: to be appear in Nature on August 9, 200

    Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3

    Full text link
    Topological insulators are a recently discovered class of materials with fascinating properties: While the inside of the solid is insulating, fundamental symmetry considerations require the surfaces to be metallic. The metallic surface states show an unconventional spin texture, electron dynamics and stability. Recently, surfaces with only a single Dirac cone dispersion have received particular attention. These are predicted to play host to a number of novel physical phenomena such as Majorana fermions, magnetic monopoles and unconventional superconductivity. Such effects will mostly occur when the topological surface state lies in close proximity to a magnetic or electric field, a (superconducting) metal, or if the material is in a confined geometry. Here we show that a band bending near to the surface of the topological insulator Bi2_2Se3_3 gives rise to the formation of a two-dimensional electron gas (2DEG). The 2DEG, renowned from semiconductor surfaces and interfaces where it forms the basis of the integer and fractional quantum Hall effects, two-dimensional superconductivity, and a plethora of practical applications, coexists with the topological surface state in Bi2_2Se3_3. This leads to the unique situation where a topological and a non-topological, easily tunable and potentially superconducting, metallic state are confined to the same region of space.Comment: 12 pages, 3 figure

    Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    Get PDF
    Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes.Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, (18)O- and (16)O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change >or=1.5 and p<or=0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARbeta/delta mRNA.Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in type 2 diabetic renal disease. Our observations provide novel insights into potential links between altered lipid metabolism and other gene networks controlled by retinoic acid in the diabetic kidney, and demonstrate the utility of using systems biology to gain new insights into diabetic nephropathy

    Errores de medicación en pediatría

    Get PDF
    Concerns regarding patient safety affect healthcare, and medication errors are the most frequent category of medical errors and linked with severe consequences. This study discusses epidemiologic characteristics of medication errors in pediatric patients and points out prevention strategies. Approximately 8% of the studies on the subject of medication errors identified in different national and international databases are distinctively related to the pediatric population. Children are vulnerable to medication errors due to intrinsic factors, such as proper anatomic and physiological characteristics; and due to extrinsic factors, with emphasis on the lack of public health politics and changes in the pharmaceutical industry to attend children's needs. The available evidences indicate, as imperative, the implementation of strategies to prevent medication errors, contributing to promote patient safety.La seguridad del paciente es un problema de salud pública y los errores con medicamentos son los más frecuentes y más graves. Este artículo describe características epidemiológicas de errores de medicación en áreas de atención pediátrica y algunas estrategias de prevención. Aproximadamente 8% de las investigaciones sobre errores de medicación identificadas en las bases de datos nacionales e internacionales se refieren específicamente a niños. Los niños tienen mayor vulnerabilidad a la ocurrencia de errores debidos a factores intrínsecos, con destaque para características anatómicas y fisiológicas, e extrínsecos, en particular con respecto a falta de políticas sanitarias y de la industria farmacéutica orientada a la atención de tales características. Evidencias muestran la necesidad de aplicar estrategias para prevenir errores de medicación, promoviendo la seguridad del paciente.A segurança do paciente constitui problema de saúde pública, e erros com medicamentos são os mais freqüentes e graves. O artigo apresenta características epidemiológicas dos erros de medicação em diferentes áreas de atendimento pediátrico, e aponta estratégias de prevenção. Aproximadamente 8% das pesquisas sobre erros de medicação identificadas em bases de dados nacionais e internacionais referem-se à população pediátrica. Crianças apresentam maior vulnerabilidade à ocorrência de erros devido a fatores intrínsecos, destacando-se características anatômicas e fisiológicas; e extrínsecos, relativos à falta de políticas de saúde e da indústria farmacêutica voltadas ao atendimento de tais especificidades. As evidências apontam para a necessidade de implementação de estratégias de prevenção de erros de medicação, contribuindo para promover a segurança do paciente.Universidade Federal de São Paulo (UNIFESP) Departamento de EnfermagemUNIFESP, Depto. de EnfermagemSciEL

    Engendering harm: a critique of sex selection for 'family balancing'

    Get PDF
    The most benign rationale for sex-selection is deemed to be “family balancing.” On this view, provided the sex-distribution of an existing offspring group is “unbalanced,” one may legitimately use reproductive technologies to select the sex of the next child. I present four novel concerns with granting “family balancing” as a justification for sex-selection: (a) families or family subsets should not be subject to medicalization; (b) sex selection for “family balancing” entrenches heteronormativity, inflicting harm in at least three specific ways; (c) the logic of affirmative action is appropriated; (d) the moral mandate of reproductive autonomy is misused. I conclude that the harms caused by “family balancing” are sufficiently substantive to over-ride any claim arising from a supposed right to sex selection as an instantiation of procreative autonomy

    Effects of insurance status on children's access to specialty care: a systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current climate of rising health care costs has led many health insurance programs to limit benefits, which may be problematic for children needing specialty care. Findings from pediatric primary care may not transfer to pediatric specialty care because pediatric specialists are often located in academic medical centers where institutional rules determine accepted insurance. Furthermore, coverage for pediatric specialty care may vary more widely due to systematic differences in inclusion on preferred provider lists, lack of availability in staff model HMOs, and requirements for referral. Our objective was to review the literature on the effects of insurance status on children's access to specialty care.</p> <p>Methods</p> <p>We conducted a systematic review of original research published between January 1, 1992 and July 31, 2006. Searches were performed using Pubmed.</p> <p>Results</p> <p>Of 30 articles identified, the majority use number of specialty visits or referrals to measure access. Uninsured children have poorer access to specialty care than insured children. Children with public coverage have better access to specialty care than uninsured children, but poorer access compared to privately insured children. Findings on the effects of managed care are mixed.</p> <p>Conclusion</p> <p>Insurance coverage is clearly an important factor in children's access to specialty care. However, we cannot determine the structure of insurance that leads to the best use of appropriate, quality care by children. Research about specific characteristics of health plans and effects on health outcomes is needed to determine a structure of insurance coverage that provides optimal access to specialty care for children.</p

    Stanniocalcin-1 Regulates Re-Epithelialization in Human Keratinocytes

    Get PDF
    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca2+]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca2+]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca2+]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing
    corecore