886 research outputs found

    Facilitating text reading in posterior cortical atrophy

    Get PDF
    Objective We report 1) the first quantitative investigation of text reading in posterior cortical atrophy (PCA); and 2) the effects of two novel software-based reading aids that result in dramatic improvements in PCA patients' reading ability. Methods Reading performance, eye movements and fixations were assessed in PCA and typical Alzheimer’s disease (tAD) patients and healthy controls (Experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (Experiment 2). Results PCA patients’ mean reading accuracy was significantly worse (57%) compared to both tAD patients (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%-270%) and self-rated measures of reading. Data suggest a greater efficiency of PCA patients’ fixations and eye movements under the single-word reading aid. Conclusions These findings demonstrate how neurological characterisation of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. Classification of evidence This study provides Class III evidence that for patients with posterior cortical atrophy, two software-based reading aids (single-word and double-word) improve reading accuracy

    Looking but Not Seeing: Recent Perspectives on Posterior Cortical Atrophy

    Get PDF
    Posterior cortical atrophy (PCA) is the canonical “visual dementia,” with affected individuals experiencing a progressive disintegration of their visual world owing to dysfunction and atrophy at the back of the brain. The syndrome, which also affects literacy, numeracy, and gesture, is typically caused by Alzheimer’s disease, but is distinguished from more common amnestic presentations by virtue of relatively preserved episodic memory and insight. Although problems with object and space perception are the most widely reported and investigated symptoms, these higher-order perceptual difficulties are often underpinned by an array of changes in more basic visual and oculomotor processes. Here we review recent studies providing insights into these more elementary aspects of vision in PCA, including fixation stability, saccade generation, point localization, excessive crowding, and factors affecting the effective field of vision. We argue that a more detailed appreciation of these fundamental changes in the early visual system not only will improve the characterization and understanding of this rare clinico-radiological syndrome but will also guide the design of visual aids and strategies aimed at maintaining everyday abilities in individuals with PCA

    The oral spelling profile of Posterior Cortical Atrophy and the nature of the graphemic representation

    Get PDF
    Spelling is a complex cognitive task where central and peripheral components are involved in engaging resources from many different cognitive processes. The present paper aims to both characterize the oral spelling deficit in a population of patients affected by a neurodegenerative condition and to clarify the nature of the graphemic representation within the currently available spelling models. Indeed, the nature of graphemic representation as a linear or multi-componential structure is still debated. Different hypotheses have been raised about its nature in the orthographic lexicon, with one positing that graphemes are complex objects whereby quantity and identity are separately represented in orthographic representations and can thus be selectively impaired. Posterior cortical atrophy (PCA) is a neurodegenerative condition that mainly affects visuoperceptual and visuospatial functions. Spelling impairments are considered part of the disease. Nonetheless the spelling deficit has received little attention so far and often it has been interpreted in relation to peripheral impairments such as writing difficulties associated with visuoperceptual and visuospatial deficits. In the present study we provide a detailed characterization of the oral spelling profile in PCA. The data suggest that multiple deficits underpin oral spelling problems in PCA, with elements of surface and phonological dysgraphia but also suggesting the involvement of the graphemic buffer. A large phenotypic individual variability is reported. Moreover, the larger proportion and the specific nature of errors involving geminate (i.e., double) as compared to non-geminate (i.e., non-double) letters suggest that a further central impairment might be associated with the abstract graphemic representation of letter numerosity. The present study contributes to the clinical characterization of PCA and to the current debate in the cognitive literature on spelling models. Findings despite not definitive, support the hypothesis that graphemic representations are multidimensional mental objects that separately encode information about grapheme identity and quantity

    Detection of TMPRSS2 : ERG fusion gene in circulating prostate cancer cells

    Get PDF
    Creative Commons Attribution-NonCommercial-Share Alike 3.0 license (CC BY-NC SA)Aim: To investigate the existence of TMPRSS2:ERG fusion gene in circulating tumor cells (CTC) from prostate cancer patients and its potential in monitoring tumor metastasis. Methods: We analyzed the frequency of TMPRSS2: ERG and TMPRSS2:ETV1 transcripts in 27 prostate cancer biopsies from prostatectomies, and TMPRSS2:ERG transcripts in CTC isolated from 15 patients with advanced androgen independent disease using reverse transcription polymerase chain reaction (RT-PCR). Fluorescence in situ hybridization (FISH) was applied to analyze the genomic truncation of ERG, which is the result of TMPRSS2:ERG fusion in 10 of the 15 CTC samples. Results: TMPRSS2: ERG transcripts were found in 44% of our samples, but we did not detect expression of TMPRSS2:ETV1. Using FISH analysis we detected chromosomal rearrangements affecting the ERG gene in 6 of 10 CTC samples, including 1 case with associated TMPRSS2:ERG fusion at the primary site. However, TMPRSS2:ERG transcripts were not detected in any of the 15 CTC samples, including the 10 cases analyzed by FISH. Conclusion: Although further study is required to address the association between TMPRSS2:ERG fusion and prostate cancer metastasis, detection of genomic truncation of the ERG gene by FISH analysis could be useful for monitoring the appearance of CTC and the potential for prostate cancer metastasis.Peer reviewedFinal Published versio

    Pronounced Impairment of Everyday Skills and Self-Care in Posterior Cortical Atrophy.

    Get PDF
    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visual dysfunction and parietal, occipital, and occipitotemporal atrophy. The aim of this study was to compare the impact of PCA and typical Alzheimer's disease (tAD) on everyday functional abilities and neuropsychiatric status. The Cambridge Behavioural Inventory-Revised was given to carers of 32 PCA and 71 tAD patients. PCA patients showed significantly greater impairment in everyday skills and self-care while the tAD group showed greater impairment in aspects of memory and orientation, and motivation. We suggest that PCA poses specific challenges for those caring for people affected by the condition

    (Con)text-specific effects of visual dysfunction on reading in posterior cortical atrophy.

    Get PDF
    Reading deficits are a common early feature of the degenerative syndrome posterior cortical atrophy (PCA) but are poorly understood even at the single word level. The current study evaluated the reading accuracy and speed of 26 PCA patients, 17 typical Alzheimer's disease (tAD) patients and 14 healthy controls on a corpus of 192 single words in which the following perceptual properties were manipulated systematically: inter-letter spacing, font size, length, font type, case and confusability. PCA reading was significantly less accurate and slower than tAD patients and controls, with performance significantly adversely affected by increased letter spacing, size, length and font (cursive < non-cursive), and characterised by visual errors (69% of all error responses). By contrast, tAD and control accuracy rates were at or near ceiling, letter spacing was the only perceptual factor to influence reading speed in the same direction as controls, and, in contrast to PCA patients, control reading was faster for larger font sizes. The inverse size effect in PCA (less accurate reading of large than small font size print) was associated with lower grey matter volume in the right superior parietal lobule. Reading accuracy was associated with impairments of early visual (especially crowding), visuoperceptual and visuospatial processes. However, these deficits were not causally related to a universal impairment of reading as some patients showed preserved reading for small, unspaced words despite grave visual deficits. Rather, the impact of specific types of visual dysfunction on reading was found to be (con)text specific, being particularly evident for large, spaced, lengthy words. These findings improve the characterisation of dyslexia in PCA, shed light on the causative and associative factors, and provide clear direction for the development of reading aids and strategies to maximise and sustain reading ability in the early stages of disease

    The TopClosure® 3S System, for skin stretching and a secure wound closure

    Get PDF
    The principle of stretching wound margins for primary wound closure is commonly practiced and used for various skin defects, leading at times to excessive tension and complications during wound closure. Different surgical techniques, skin stretching devices and tissue expanders have been utilized to address this issue. Previously designed skin stretching devices resulted in considerable morbidity. They were invasive by nature and associated with relatively high localized tissue pressure, frequently leading to necrosis, damage and tearing of skin at the wound margins. To assess the clinical effectiveness and performance and, to determine the safety of TopClosure® for gradual, controlled, temporary, noninvasive and invasive applications for skin stretching and secure wound closing, the TopClosure® device was applied to 20 patients for preoperative skin lesion removal and to secure closure of a variety of wound sizes. TopClosure® was reinforced with adhesives, staples and/or surgical sutures, depending on the circumstances of the wound and the surgeon’s judgment. TopClosure® was used prior to, during and/or after surgery to reduce tension across wound edges. No significant complications or adverse events were associated with its use. TopClosure® was effectively used for preoperative skin expansion in preparation for dermal resection (e.g., congenital nevi). It aided closure of large wounds involving significant loss of skin and soft tissue by mobilizing skin and subcutaneous tissue, thus avoiding the need for skin grafts or flaps. Following surgery, it was used to secure closure of wounds under tension, thus improving wound aesthetics. A sample case study will be presented. We designed TopClosure®, an innovative device, to modify the currently practiced concept of wound closure by applying minimal stress to the skin, away from damaged wound edges, with flexible force vectors and versatile methods of attachment to the skin, in a noninvasive or invasive manner

    FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections

    Get PDF
    Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections

    Eyetracking Metrics in Young Onset Alzheimer’s Disease: A Window into Cognitive Visual Functions

    Get PDF
    Young onset Alzheimer’s disease (YOAD) is defined as symptom onset before the age of 65 years and is particularly associated with phenotypic heterogeneity. Atypical presentations, such as the clinic-radiological visual syndrome posterior cortical atrophy (PCA), often lead to delays in accurate diagnosis. Eyetracking has been used to demonstrate basic oculomotor impairments in individuals with dementia. In the present study, we aim to explore the relationship between eyetracking metrics and standard tests of visual cognition in individuals with YOAD. Fifty-seven participants were included: 36 individuals with YOAD (n =  26 typical AD; n =  10 PCA) and 21 age-matched healthy controls. Participants completed three eyetracking experiments: fixation, pro-saccade, and smooth pursuit tasks. Summary metrics were used as outcome measures and their predictive value explored looking at correlations with visuoperceptual and visuospatial metrics. Significant correlations between eyetracking metrics and standard visual cognitive estimates are reported. A machine-learning approach using a classification method based on the smooth pursuit raw eyetracking data discriminates with approximately 95% accuracy patients and controls in cross-validation tests. Results suggest that the eyetracking paradigms of a relatively simple and specific nature provide measures not only reflecting basic oculomotor characteristics but also predicting higher order visuospatial and visuoperceptual impairments. Eyetracking measures can represent extremely useful markers during the diagnostic phase and may be exploited as potential outcome measures for clinical trials
    • …
    corecore