52 research outputs found

    Quantitative Point of Care Tests for Timely Diagnosis of Early‐Onset Preeclampsia with High Sensitivity and Specificity

    Get PDF
    AbstractPreeclampsia is a heterogeneous and multiorgan cardiovascular disorder of pregnancy. Here, we report the development of a novel strip‐based lateral flow assay (LFA) using lanthanide‐doped upconversion nanoparticles conjugated to antibodies targeting two different biomarkers for detection of preeclampsia. We first measured circulating plasma FKBPL and CD44 protein concentrations from individuals with early‐onset preeclampsia (EOPE), using ELISA. We confirmed that the CD44/FKBPL ratio is reduced in EOPE with a good diagnostic potential. Using our rapid LFA prototypes, we achieved an improved lower limit of detection: 10 pg ml−1 for FKBPL and 15 pg ml−1 for CD44, which is more than one order lower than the standard ELISA method. Using clinical samples, a cut‐off value of 1.24 for CD44/FKBPL ratio provided positive predictive value of 100 % and the negative predictive value of 91 %. Our LFA shows promise as a rapid and highly sensitive point‐of‐care test for preeclampsia.</jats:p

    LOX-1 expression is reduced in placenta from pregnancies complicated by preeclampsia and in hypoxic cytotrophoblast

    Full text link
    Objectives: The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is upregulated in the maternal vasculature in preeclampsia, and contributes to oxidative stress and endothelial dysfunction. However, its function in the placenta is unclear. This paper investigated LOX-1 expression in models of placental dysfunction and preeclampsia, and whether candidate therapeutics for preeclampsia could alter its expression. Study design: Placentas were collected from preterm pregnancies and cases of preterm preeclampsia and fetal growth restriction. Blood was collected from participants whose pregnancies were complicated by preterm fetal growth restriction and/or preeclampsia. Primary cytotrophoblast and placental explant tissue were cultured under hypoxic (1% O2) or normoxic (8% O2) conditions. Cytotrophoblast were exposed to 10% preeclamptic or control serum. Cytotrophoblast and preeclamptic explant tissue were treated with 100 ÂľM esomeprazole, lansoprazole or rabeprazole. Main outcome measures: LOX-1 expression was assessed in all samples via qPCR. Results: LOX-1 expression was reduced in placentas from cases of preterm preeclampsia, but not fetal growth restriction, compared to controls. LOX-1 expression was reduced in cytotrophoblast under hypoxia, but not in explant tissue. Treatment with preeclamptic serum in vitro did not alter cytotrophoblast LOX-1 expression. Circulating LOX-1 mRNA was unaltered in patients with fetal growth restriction, preeclampsia, and fetal hypoxia, compared to controls. Treatment with esomeprazole or lansoprazole in vitro increased placental LOX-1 expression. Conclusions: LOX-1 expression is reduced in preeclamptic placentas and hypoxic cytotrophoblast. Esomeprazole and lansoprazole increase placental LOX-1 expression. These findings demonstrate a role for LOX-1 in the placenta, and improve our understanding of maternal adaptations in pregnancy complications

    Comprehensive Analysis of Leukocytes, Vascularization and Matrix Metalloproteinases in Human Menstrual Xenograft Model

    Get PDF
    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation

    MMP-15 Is Upregulated in Preeclampsia, but Does Not Cleave Endoglin to Produce Soluble Endoglin

    Get PDF
    Preeclampsia is a major pregnancy complication, characterized by severe endothelial dysfunction, hypertension and maternal end-organ damage. Soluble endoglin is an anti-angiogenic protein released from placenta and thought to play a central role in causing the endothelial dysfunction and maternal organ injury seen in severe preeclampsia. We recently reported MMP-14 was the protease producing placentally-derived soluble endoglin by cleaving full-length endoglin present on the syncytiotrophoblast surface. This find identifies a specific drug target for severe preeclampsia; interfering with MMP-14 mediated cleavage of endoglin could decrease soluble endoglin production, ameliorating clinical disease. However, experimental MMP-14 inhibition alone only partially repressed soluble endoglin production, implying other proteases might have a role in producing soluble endoglin. Here we investigated whether MMP-15–phylogenetically the closest MMP relative to MMP-14 with 66% sequence similarity–also cleaves endoglin to produce soluble endoglin. MMP-15 was localized to the syncytiotrophoblast layer of the placenta, the same site where endoglin was localized. Interestingly, it was significantly (p = 0.03) up-regulated in placentas from severe early-onset preeclamptic pregnancies (n = 8) compared to gestationally matched preterm controls (n = 8). However, siRNA knockdown of MMP-15 yielded no significant decrease of soluble endoglin production from either HUVECs or syncytialised BeWo cells in vitro. Importantly, concurrent siRNA knockdown of both MMP-14 and MMP-15 in HUVECS did not yield further decrease in soluble endoglin production compared to MMP-14 siRNA alone. We conclude MMP-15 is up-regulated in preeclampsia, but does not cleave endoglin to produce soluble endoglin

    Regulated expression of matrix metalloproteinases, inflammatory mediators, and endometrial matrix remodeling by 17beta-estradiol in the immature rat uterus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Administration of a single physiological dose of 17beta-estradiol (E2:40 microg/kg) to the ovariectomized immature rat rapidly induces uterine growth and remodeling. The response is characterized by changes in endometrial stromal architecture during an inflammatory-like response that likely involves activated matrix-metalloproteinases (MMPs). While estrogen is known as an inducer of endometrial growth, its role in specific expression of MMP family members in vivo is poorly characterized. E2-induced changes in MMP-2, -3, -7, and -9 mRNA and protein expression were analyzed to survey regulation along an extended time course 0-72 hours post-treatment. Because E2 effects inflammatory-like changes that may alter MMP expression, we assessed changes in tissue levels of TNF-alpha and MCP-1, and we utilized dexamethasone (600 microg/kg) to better understand the role of inflammation on matrix remodeling.</p> <p>Methods</p> <p>Ovariectomized 21 day-old female Sprague-Dawley rats were administered E2 and uterine tissues were extracted and prepared for transmission electron microscopy (TEM), mRNA extraction and real-time RT-PCR, protein extraction and Western blot, or gelatin zymography. In inhibitor studies, pretreatment compounds were administered prior to E2 and tissues were harvested at 4 hours post-hormone challenge.</p> <p>Results</p> <p>Using a novel TEM method to quantitatively assess changes in stromal collagen density, we show that E2-induced matrix remodeling is rapid in onset (< 1 hour) and leads to a 70% reduction in collagen density by 4 hours. Matrix remodeling is MMP-dependent, as pretreatment with batimastat ablates the hormone effect. MMP-3, -7, and -9 and inflammatory markers (TNF-alpha and MCP-1) are transiently upregulated with peak expression at 4 hours post-E2 treatment. MMP-2 expression is increased by E2 but highest expression and activity occur later in the response (48 hours). Dexamethasone inhibits E2-modulated changes in collagen density and expression of MMPs although these effects are variable. Dexamethasone upregulates MMP-3 mRNA but not protein levels, inhibiting E2-induced upregulation of MMP-7, and -9, and MCP-1 mRNA and protein but not inhibiting the hormone-induced increase in TNF-alpha mRNA.</p> <p>Conclusion</p> <p>The data demonstrate that E2-regulated endometrial remodeling is rapid in onset (<1 hour) and peak expression of MMPs and inflammatory mediators correlates temporally with the period of lowest stromal collagen density during uterine tissue hypertrophy.</p

    Reconstruction of Endometrium from Human Endometrial Side Population Cell Lines

    Get PDF
    Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC) population recently identified by several groups using the side population (SP) technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP) cell lines (ICE 1–7): four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12–15 passages (20 weeks) and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3) and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN). Phenotype analysis corroborated their epithelial (CD9+) or stromal (vimentin+) cell origin and mesenchymal (CD90+, CD73+ and CD45−) attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα) or progesterone receptor (PR). The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis

    A comparison of sample collection methods for quantifying cell-free fetal neurodevelopment transcripts in amniotic fluid.

    Get PDF
    BACKGROUND: Cell-free RNA (cfRNA) transcripts known to be expressed by the fetal brain are detectable by quantitative reverse transcription PCR (RT-qPCR) in amniotic fluid and represent potential biomarkers of neurodevelopment. The aim of this study was to compare the cfRNA yields from amniotic fluid (AF) collected in a commercial RNA stabilization product with the traditional method of freezing alone. FINDINGS: Thirteen women undergoing elective Cesarean birth at term without labor had whole AF collected at the time of uterine incision, prior to membrane rupture. Patient samples were split between Streck RNA blood collection tubes (BCT) and plain sterile polypropylene centrifuge tubes. Cell-free RNA from the AF supernatant was extracted according to a previously published protocol. RT qPCR was performed for the reference gene GAPDH, and three genes associated with neurodevelopment (NRXN3, NTRK3, and ZBTB18). The yield from samples collected in Streck RNA BCT and plain centrifuge tubes were compared with the paired t test. GAPDH, NRXN3 and ZBTB18 amplified successfully in all samples, but NTRK3 did not. The RNA yield was significantly lower in samples collected in the Streck RNA BCT compared with the traditional storage method of freezing alone for all three successfully amplified genes (p < 0.0001). CONCLUSIONS: Selected cfRNA neurodevelopment transcripts are consistently detectable in third trimester AF. There appears to be no benefit in collecting AF in Streck RNA BCT for quantitative studies of AF cell-free RNA

    Placental-specific sFLT-1: role in pre-eclamptic pathophysiology and its translational possibilities for clinical prediction and diagnosis

    No full text
    Pre-eclampsia is a common obstetric complication globally responsible for a significant burden of maternal and perinatal morbidity and mortality. Central to its pathophysiology is the anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT-1). sFLT-1 is released from a range of tissues into the circulation, where it antagonizes the activity of vascular endothelial growth factor and placental growth factor leading to endothelial dysfunction. It is this widespread endothelial dysfunction that produces the clinical features of pre-eclampsia including hypertension and proteinuria. There are multiple splice variants of sFLT-1. One, known as sFLT-1 e15a, evolved quite recently and is only present in humans and higher order primates. This sFLT-1 variant is also the main sFLT-1 secreted from the placenta. Recent work has shown that sFLT-1 e15a is significantly elevated in the placenta and circulation of women with pre-eclampsia. It is also biologically active, capable of causing endothelial dysfunction and the end-organ dysfunction seen in pre-eclampsia. Indeed, the over-expression of sFLT-1 e15a in mice recapitulates the pre-eclamptic phenotype in pregnancy. Therefore, here we propose that sFLT-1 e15a may be the sFLT-1 variant primarily responsible for pre-eclampsia, a uniquely human disease. Furthermore, this placental-specific sFLT-1 variant provides promise for use as an accurate biomarker in the prediction or diagnosis of pre-eclampsia
    • …
    corecore