320 research outputs found

    Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium channel (NaCh) expressions change following nerve and inflammatory lesions and this change may contribute to the activation of pain pathways. In a previous study we found a dramatic increase in the size and density of NaCh accumulations, and a remodeling of NaChs at intact and altered myelinated sites at a location just proximal to a combined partial axotomy and chromic suture lesion of the rat infraorbital nerve (ION) with the use of an antibody that identifies all NaCh isoforms. Here we evaluate the contribution of the major nodal NaCh isoform, Na<sub>v</sub>1.6, to this remodeling of NaChs following the same lesion. Sections of the ION from normal and ION lesioned subjects were double-stained with antibodies against Na<sub>v</sub>1.6 and caspr (contactin-associated protein; a paranodal protein to identify nodes of Ranvier) and then z-series of optically sectioned images were captured with a confocal microscope. ImageJ (NIH) software was used to quantify the average size and density of Na<sub>v</sub>1.6 accumulations, while additional single fiber analyses measured the axial length of the nodal gap, and the immunofluorescence intensity of Na<sub>v</sub>1.6 in nodes and of caspr in the paranodal region.</p> <p>Results</p> <p>The findings showed a significant increase in the average size and density of Na<sub>v</sub>1.6 accumulations in lesioned IONs when compared to normal IONs. The results of the single fiber analyses in caspr-identified typical nodes showed an increased axial length of the nodal gap, an increased immunofluorescence intensity of nodal Na<sub>v</sub>1.6 and a decreased immunofluorescence intensity of paranodal caspr in lesioned IONs when compared to normal IONs. In the lesioned IONs, Na<sub>v</sub>1.6 accumulations were also seen in association with altered caspr-relationships, such as heminodes.</p> <p>Conclusion</p> <p>The results of the present study identify Na<sub>v</sub>1.6 as one isoform involved in the augmentation and remodeling of NaChs at nodal sites following a combined partial axotomy and chromic suture ION lesion. The augmentation of Na<sub>v</sub>1.6 may result from an alteration in axon-Schwann cell signaling mechanisms as suggested by changes in caspr expression. The changes identified in this study suggest that the participation of Na<sub>v</sub>1.6 should be considered when examining changes in the excitability of myelinated axons in neuropathic pain models.</p

    Negative Effects of Paternal Age on Children's Neurocognitive Outcomes Can Be Explained by Maternal Education and Number of Siblings

    Get PDF
    Background: Recent findings suggest advanced paternal age may be associated with impaired child outcomes, in particular, neurocognitive skills. Such patterns are worrisome given relatively universal trends in advanced countries toward delayed nuptiality and fertility. But nature and nurture are both important for child outcomes, and it is important to control for both when drawing inferences about either pathway. Methods and Findings: We examined cross-sectional patterns in six developmental outcome measures among children in the U.S. Collaborative Perinatal Project (n = 31,346). Many of these outcomes at 8 mo, 4 y, and 7 y of age (Bayley scales, Stanford Binet Intelligence Scale, Graham-Ernhart Block Sort Test, Wechsler Intelligence Scale for Children, Wide Range Achievement Test) are negatively correlated with paternal age when important family characteristics such as maternal education and number of siblings are not included as covariates. But controlling for family characteristics in general and mother’s education in particular renders the effect of paternal age statistically insignificant for most developmental measures. Conclusions: Assortative mating produces interesting relationships between maternal and paternal characteristics that can inject spurious correlation into observational studies via omitted variable bias. Controlling for both nature and nurture reveals little residual evidence of a link between child neurocognitive outcomes and paternal age in these data. Result

    Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere

    No full text
    It is widely accepted that Earth’s early atmosphere contained less than 0.001 per cent of the present-day atmospheric oxygen (O2) level, until the Great Oxidation Event resulted in a major rise in O2 concentration about 2.4 billion years ago1. There are multiple lines of evidence for low O2 concentrations on early Earth, but all previous observations relate to the composition of the lower atmosphere2 in the Archaean era; to date no method has been developed to sample the Archaean upper atmosphere. We have extracted fossil micrometeorites from limestone sedimentary rock that had accumulated slowly 2.7 billion years ago before being preserved in Australia’s Pilbara region. We propose that these micrometeorites formed when sand-sized particles entered Earth’s atmosphere and melted at altitudes of about 75 to 90 kilometres (given an atmospheric density similar to that of today3). Here we show that the FeNi metal in the resulting cosmic spherules was oxidized while molten, and quench-crystallized to form spheres of interlocking dendritic crystals primarily of magnetite (Fe3O4), with wüstite (FeO)+metal preserved in a few particles. Our model of atmospheric micrometeorite oxidation suggests that Archaean upper-atmosphere oxygen concentrations may have been close to those of the present-day Earth, and that the ratio of oxygen to carbon monoxide was sufficiently high to prevent noticeable inhibition of oxidation by carbon monoxide. The anomalous sulfur isotope (Δ33S) signature of pyrite (FeS2) in seafloor sediments from this period, which requires an anoxic surface environment4, implies that there may have been minimal mixing between the upper and lower atmosphere during the Archaean

    Talk to the Virtual Hands: Self-Animated Avatars Improve Communication in Head-Mounted Display Virtual Environments

    Get PDF
    Background When we talk to one another face-to-face, body gestures accompany our speech. Motion tracking technology enables us to include body gestures in avatar-mediated communication, by mapping one's movements onto one's own 3D avatar in real time, so the avatar is self-animated. We conducted two experiments to investigate (a) whether head-mounted display virtual reality is useful for researching the influence of body gestures in communication; and (b) whether body gestures are used to help in communicating the meaning of a word. Participants worked in pairs and played a communication game, where one person had to describe the meanings of words to the other. Principal Findings In experiment 1, participants used significantly more hand gestures and successfully described significantly more words when nonverbal communication was available to both participants (i.e. both describing and guessing avatars were self-animated, compared with both avatars in a static neutral pose). Participants ‘passed’ (gave up describing) significantly more words when they were talking to a static avatar (no nonverbal feedback available). In experiment 2, participants' performance was significantly worse when they were talking to an avatar with a prerecorded listening animation, compared with an avatar animated by their partners' real movements. In both experiments participants used significantly more hand gestures when they played the game in the real world. Conclusions Taken together, the studies show how (a) virtual reality can be used to systematically study the influence of body gestures; (b) it is important that nonverbal communication is bidirectional (real nonverbal feedback in addition to nonverbal communication from the describing participant); and (c) there are differences in the amount of body gestures that participants use with and without the head-mounted display, and we discuss possible explanations for this and ideas for future investigation

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-

    Get PDF
    We report the first observation of the baryonic flavor-changing neutral current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}. We also report the first measurement of the differential branching ratio of B_s -> phi mu+ mu- using 49 signal events. In addition, we report branching ratios for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined
    corecore