1,035 research outputs found

    Characterization of a new genotype of avian bornavirus from wild ducks

    Get PDF
    BACKGROUND: Avian bornaviruses (ABV) are a recently described group of intranuclear negative-stranded RNA viruses (Order Mononegavirales, Family Bornaviridae). At least 13 different ABV genotypes have been described. One genotype, the Canada goose genotype (ABV-CG), has been isolated from geese and swans and is widely distributed across North America. RESULTS: We have isolated and characterized a previously undescribed genotype of avian bornavirus from the brains of wild ducks. This new genotype, provisionally designated ABV genotype MALL, was detected in 12 of 83 mallards, and 1 of 8 wood ducks collected at a single location in central Oklahoma. The virus was cultured on primary duck embryo fibroblasts, fragments were cloned, and its genome sequence of 8904 nucleotides determined. This new genotype has 72% nucleotide identity and 83% amino acid identity with the ABV-CG genotype previously shown to be present in geese and swans. Histologic and immunohistochemical examination of the brains and eyes of four positive ducks indicated the presence of virus-infected neurons and glia in their cerebrums and retinas in the absence of inflammation. CONCLUSIONS: More than one genotype of ABV is circulating in North American waterfowl. While the infected ducks were not observed to be suffering from overt disease, based on the immunohistochemistry, we speculate that they may have suffered some visual impairment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12985-014-0197-9) contains supplementary material, which is available to authorized users

    Assessing the conservation status of mangroves in Rakhine, Myanmar

    Get PDF
    Ecosystem degradation is a key challenge that human society faces, as ecosystems provide services that are tied to human well-being. Particularly, mangrove ecosystems provide important services to communities but are suffering heavy degradation, loss and potential collapse due to anthropogenic activities. The IUCN Red List of Ecosystems is a transparent and consistent framework for assessing ecosystems' risk of collapse and is increasingly used to inform legislation and ecosystem management globally. Satellite data have become increasingly common in environmental monitoring due to their extensive spatial and temporal coverage. Here, recent advances in analyses using satellite-derived data were implemented to reassess the conservation status of the ‘Rakhine mangrove forest on mud’, an important intertidal ecosystem in Myanmar, extending a previous national Red List assessment that assessed the ecosystem as Critically Endangered. By incorporating additional data sources and analyses, the extended assessment produced more robust results and reduced the uncertainty in the previous assessment. Overall, the ecosystem was assessed as Critically Endangered (range: Vulnerable to Critically Endangered) as a result of historical mangrove extent loss. Recent losses and biotic disruptions were also observed, which would have led to the ecosystem being assessed as Vulnerable. While the final outcome of the Red List assessment remained at Critically Endangered due to the historical state of the mangroves pre-dating the temporal coverage from satellite data, the uncertainty of the ecosystem's status was reduced, and the reassessment highlighted the recent areal changes and mangrove degradation that has occurred. The importance of conducting reassessments when new data become available is discussed, and a template for future mangrove Red List assessments that use satellite data as their primary source of information to improve the robustness of their results is presented

    Detection and Characterization of a Distinct Bornavirus Lineage from Healthy Canada Geese (\u3ci\u3eBranta canadensis\u3c/i\u3e)

    Get PDF
    Avian bornaviruses (ABV), identified in 2008, infect captive parrots and macaws worldwide. The natural reservoirs of these viruses are unknown. Reverse transcription-PCR (RT-PCR) was used to screen oropharyngeal/ cloacal swab and brain samples from wild Canada geese (Branta canadensis) for ABV. Approximately 2.9% of swab samples were positive for bornavirus sequences. Fifty-two percent of brain samples from 2 urban flocks also tested positive, and brain isolates were cultured in duck embryo fibroblasts. Phylogenetic analyses placed goose isolates in an independent cluster, and more notably, important regulatory sequences present in Borna disease virus but lacking in psittacine ABVs were present in goose isolates

    Threatened ecosystems of Myanmar. An IUCN Red List of ecosystems assessment. Version 1.0.

    Get PDF
    [Excerpt:] Myanmar's Red List of Ecosystems is a tool to understand our threats and plan for conservation and sustainable management. Forests constitute the dominant ecosystems in Myanmar, and we are blessed with high forest cover (42.92%) and diversity, with 36 of our 64 ecosystems identified as forest and mangrove. These forests and biodiversity underpin a range of ecosystem services which are central to Myanmar’s sustainable development, supporting human and resource needs, and contributing to a more stable climate. The loss of forests and our biodiversity leads to degradation and deterioration of ecosystem services and threatens Myanmar’s irreplaceable ecological heritage. We often discuss ecosystem services but this study documents Myanmar’s terrestrial ecosystem typology and spatial distribution for the first time. This is one of the first ecosystem red lists developed within ASEAN and this will inform our implementation for decades to come to inform legislation, land-use planning, protected area expansion, monitoring and reporting, and ecosystem management. To sustain our forests and our biodiversity we need to sustainably manage all of these incredible ecosystems

    Permeating the social justice ideals of equality and equity within the context of Early Years: challenges for leadership in multi-cultural and mono-cultural primary schools

    Get PDF
    The ideology and commitment of social justice principles is central to Early Years practice, however, the term social justice in education is complex and remains contested. This paper explores the ideology of social justice through links between equality and equity and how it is embedded within Early Years, and what remain the potential challenges for leadership. Interviews in English multi-cultural and mono-cultural primary schools were conducted. Findings showed that the ideology of social justice, equality and equity was interpreted differently. Multi-cultural schools appear to use a greater variety of activities to embed social justice principles that involved their diverse communities more to enrich the curriculum. In mono-cultural schools leadership had to be more creative in promoting equality and equity given the smaller proportion of their diverse pupil and staff population. Tentative conclusions suggest that the vision for permeating equality and equity in Early Years, at best, is at early stages

    New weapons in the toad toolkit: A review of methods to control and mitigate the biodiversity impacts of invasive cane toads (rhinella marina)

    Full text link
    © 2017 by The University of Chicago Press. All rights reserved. Our best hope of developing innovative methods to combat invasive species is likely to come from the study of high-profile invaders that have attracted intensive research not only into control, but also basic biology. Here we illustrate that point by reviewing current thinking about novel ways to control one of the world’s most well-studied invasions: that of the cane toad in Australia. Recently developed methods for population suppression include more effective traps based on the toad’s acoustic and pheromonal biology. New tools for containing spread include surveillance technologies (e.g., eDNA sampling and automated call detectors), as well as landscape-level barriers that exploit the toad’s vulnerability to desiccation— a strategy that could be significantly enhanced through the introduction of sedentary, rangecore genotypes ahead of the invasion front. New methods to reduce the ecological impacts of toads include conditioned taste aversion in free-ranging predators, gene banking, and targeted gene flow. Lastly, recent advances in gene editing and gene drive technology hold the promise of modifying toad phenotypes in ways that may facilitate control or buffer impact. Synergies between these approaches hold great promise for novel and more effective means to combat the toad invasion and its consequent impacts on biodiversity
    • …
    corecore